These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3197689)

  • 1. Unchanged regional norepinephrine glycol metabolite levels in rat brain two months after amygdala kindling.
    Okazaki MM; Warsh JJ; Burnham WM
    Epilepsy Res; 1988; 2(2):72-8. PubMed ID: 3197689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unchanged norepinephrine turnover and concentrations in amygdala-kindled rat brain regions 2 months postseizure.
    Okazaki MM; Warsh JJ; Burnham WM
    Exp Neurol; 1986 Oct; 94(1):81-90. PubMed ID: 3758289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rat brain norepinephrine metabolism: substantial clearance through 3,4-dihydroxyphenylethyleneglycol formation.
    Li PP; Warsh JJ; Godse DD
    J Neurochem; 1983 Oct; 41(4):1065-71. PubMed ID: 6619846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postmortem stability of brain 3-methoxy-4-hydroxyphenylethyleneglycol and 3,4-dihydroxyphenylethyleneglycol in the rat and mouse.
    Warsh JJ; Godse DD; Li PP; Cheung SW
    J Neurochem; 1981 Mar; 36(3):902-7. PubMed ID: 7205280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential changes in noradrenaline turnover in specific regions of rat brain produced by controllable and uncontrollable shocks.
    Tsuda A; Tanaka M
    Behav Neurosci; 1985 Oct; 99(5):802-17. PubMed ID: 3843302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between hypothalamic noradrenergic neuronal activity and serum 3-methoxy-4-hydroxyphenylethylene glycol in the rat.
    Grunstein HS; Gleeson RM; Smythe GA
    Life Sci; 1986 Jul; 39(3):207-13. PubMed ID: 3736321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and clearance of norepinephrine glycol metabolites in mouse brain.
    Li PP; Warsh JJ; Godse DD
    J Neurochem; 1984 Nov; 43(5):1425-33. PubMed ID: 6491661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rat brain and plasma norepinephrine glycol metabolites determined by gas chromatography-mass fragmentography.
    Warsh JJ; Godse DD; Cheung SW; Li PP
    J Neurochem; 1981 Mar; 36(3):893-901. PubMed ID: 7205279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative importance of 3-methoxy-4-hydroxyphenylglycol and 3,4-dihydroxyphenylglycol as norepinephrine metabolites in rat, monkey, and humans.
    Elsworth JD; Roth RH; Redmond DE
    J Neurochem; 1983 Sep; 41(3):786-93. PubMed ID: 6875564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional brain catecholamines and memory: effects of footshock, amygdala implantation, and stimulation.
    Gold PE; Welsh KA
    Behav Neural Biol; 1987 Mar; 47(2):116-29. PubMed ID: 3579832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Further characterization of brain 3,4-dihydroxyphenylethyleneglycol (DHPG) formation: dependence on noradrenergic activity and site of formation.
    Li PP; Warsh JJ; Godse DD
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Jan; 332(1):26-33. PubMed ID: 3951564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is 3,4-dihydroxyphenylglycol the major route of central norepinephrine metabolism in rat brain?
    Karege F; Gaillard JM
    Neurosci Lett; 1986 Aug; 69(1):78-83. PubMed ID: 3748468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional distribution and production rate of 3-methoxy-4-hydroxyphenylethyleneglycol sulphate (MHPG-SO4) in rat brain.
    Kohno Y; Tanaka M; Nakagawa R; Toshima N; Nagasaki N
    J Neurochem; 1981 Jan; 36(1):286-9. PubMed ID: 7463053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term reduction in beta-adrenergic receptor binding after amygdala kindling in rats.
    McIntyre DC; Roberts DC
    Exp Neurol; 1983 Oct; 82(1):17-24. PubMed ID: 6313421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of [3H]flunitrazepam and [3H]Ro5-4864 to crude homogenates of amygdala-kindled rat brain: two months post-seizure.
    Burnham WM; Niznik HB; Okazaki MM; Kish SJ
    Brain Res; 1983 Nov; 279(1-2):359-62. PubMed ID: 6315180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of acute and chronic treatment with tricyclic antidepressants on 3-methoxy-4-hydroxyphenylethyleneglycol sulfate (MHPG-SO4) contents in various regions of rat brain.
    Miyauchi T; Kitada Y; Satoh S
    Prog Neuropsychopharmacol Biol Psychiatry; 1982; 6(2):137-42. PubMed ID: 7202235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of single or repeated immobilization on release of norepinephrine and its metabolites in the central nucleus of the amygdala in conscious rats.
    Pacák K; Palkovits M; Kvetnanský R; Fukuhara K; Armando I; Kopin IJ; Goldstein DS
    Neuroendocrinology; 1993 Apr; 57(4):626-33. PubMed ID: 8367029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monoaminergic correlates of kindling.
    Lewis J; Westerberg V; Corcoran ME
    Brain Res; 1987 Feb; 403(2):205-12. PubMed ID: 3828819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-lasting increase in protein kinase C activity in the hippocampus of amygdala-kindled rat.
    Akiyama K; Ono M; Kohira I; Daigen A; Ishihara T; Kuroda S
    Brain Res; 1995 May; 679(2):212-20. PubMed ID: 7633882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustained increase of methylguanidine in rats after amygdala or hippocampal kindling.
    Shimizu Y; Morimoto K; Kuroda S; Mori A
    Epilepsy Res; 1995 May; 21(1):11-7. PubMed ID: 7641671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.