These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 31976907)

  • 1. Altering the Stiffness, Friction, and Shape Perception of Tangible Objects in Virtual Reality Using Wearable Haptics.
    Salazar SV; Pacchierotti C; de Tinguy X; Maciel A; Marchal M
    IEEE Trans Haptics; 2020; 13(1):167-174. PubMed ID: 31976907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.
    Gaffary Y; Le Gouis B; Marchal M; Argelaguet F; Arnaldi B; Lecuyer A
    IEEE Trans Vis Comput Graph; 2017 Nov; 23(11):2372-2377. PubMed ID: 28809699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FW-Touch: A Finger Wearable Haptic Interface With an MR Foam Actuator for Displaying Surface Material Properties on a Touch Screen.
    Chen D; Song A; Tian L; Fu L; Zeng H
    IEEE Trans Haptics; 2019; 12(3):281-294. PubMed ID: 31180900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.
    Maisto M; Pacchierotti C; Chinello F; Salvietti G; De Luca A; Prattichizzo D
    IEEE Trans Haptics; 2017; 10(4):511-522. PubMed ID: 28391207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can Wearable Haptic Devices Foster the Embodiment of Virtual Limbs?
    Frohner J; Salvietti G; Beckerle P; Prattichizzo D
    IEEE Trans Haptics; 2019; 12(3):339-349. PubMed ID: 30582554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Overview of Wearable Haptic Technologies and Their Performance in Virtual Object Exploration.
    van Wegen M; Herder JL; Adelsberger R; Pastore-Wapp M; van Wegen EEH; Bohlhalter S; Nef T; Krack P; Vanbellingen T
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Wearable Haptic Device for the Hand With Interchangeable End-Effectors.
    Kuang L; Ferro M; Malvezzi M; Prattichizzo D; Robuffo Giordano P; Chinello F; Pacchierotti C
    IEEE Trans Haptics; 2024; 17(2):129-139. PubMed ID: 37307180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft Wearable Skin-Stretch Device for Haptic Feedback Using Twisted and Coiled Polymer Actuators.
    Chossat JB; Chen DKY; Park YL; Shull PB
    IEEE Trans Haptics; 2019; 12(4):521-532. PubMed ID: 31562105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Skin Deformation as Force Substitution: Wearable Device Design and Performance During Haptic Exploration of Virtual Environments.
    Schorr SB; Okamura AM
    IEEE Trans Haptics; 2017; 10(3):418-430. PubMed ID: 28237933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascending and Descending in Virtual Reality: Simple and Safe System Using Passive Haptics.
    Nagao R; Matsumoto K; Narumi T; Tanikawa T; Hirose M
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1584-1593. PubMed ID: 29543176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft Pneumatic Haptic Wearable to Create the Illusion of Human Touch.
    Talhan A; Yoo Y; Cooperstock JR
    IEEE Trans Haptics; 2024; 17(2):177-190. PubMed ID: 37581970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant Frequency Skin Stretch for Wearable Haptics.
    Shull PB; Tan T; Culbertson H; Zhu X; Okamura AM
    IEEE Trans Haptics; 2019; 12(3):247-256. PubMed ID: 31095499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TouchMark: Partial Tactile Feedback Design for Upper Limb Rehabilitation in Virtual Reality.
    Zhang J; Huang M; Chen Y; Liao KL; Shi J; Liang HN; Yang R
    IEEE Trans Vis Comput Graph; 2024 Nov; 30(11):7430-7440. PubMed ID: 39255139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perception of Soft Objects in Virtual Environments Under Conflicting Visual and Haptic Cues.
    Basdogan C; Ataseven B; Srinivasan MA
    IEEE Trans Haptics; 2024; 17(2):227-236. PubMed ID: 37796677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Levitation Haptic Augmentation for Virtual Tissue Stiffness Perception.
    Tong Q; Yuan Z; Liao X; Zheng M; Yuan T; Zhao J
    IEEE Trans Vis Comput Graph; 2018 Dec; 24(12):3123-3136. PubMed ID: 29990159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.
    Kim K; Lee S
    Skin Res Technol; 2015 May; 21(2):164-74. PubMed ID: 25087469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PUMAH: Pan-Tilt Ultrasound Mid-Air Haptics for Larger Interaction Workspace in Virtual Reality.
    Howard T; Marchal M; Lecuyer A; Pacchierotti C
    IEEE Trans Haptics; 2020; 13(1):38-44. PubMed ID: 31902770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Untethered Hand Wearable with Fine-Grained Cutaneous Haptic Feedback.
    Abad AC; Reid D; Ranasinghe A
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the Effectiveness of a Wearable Haptic Interface With Cutaneous and Vibrotactile Feedback for VR-Based Teleoperation.
    Trinitatova D; Tsetserukou D
    IEEE Trans Haptics; 2023; 16(4):463-469. PubMed ID: 37037227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Getting Your Hands Dirty Outside the Lab: A Practical Primer for Conducting Wearable Vibrotactile Haptics Research.
    Blum JR; Fortin PE; Al Taha F; Alirezaee P; Demers M; Weill-Duflos A; Cooperstock JR
    IEEE Trans Haptics; 2019; 12(3):232-246. PubMed ID: 31352355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.