BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31977177)

  • 1. Effect of the Ionic Liquid Structure on the Melt Processability of Polyacrylonitrile Fibers.
    Martin HJ; Luo H; Chen H; Do-Thanh CL; Kearney LT; Mayes R; Naskar AK; Dai S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8663-8673. PubMed ID: 31977177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the elasticity of polyacrylonitrile fibers
    Wang Z; Luo H; Martin HJ; Wang T; Sun Y; Arnould MA; Thapaliya BP; Dai S
    RSC Adv; 2022 Mar; 12(14):8656-8660. PubMed ID: 35424785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology of Polyacrylonitrile/Lignin Blends in Ionic Liquids under Melt Spinning Conditions.
    Jiang J; Srinivas K; Kiziltas A; Geda A; Ahring BK
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31336600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drawing dependent structures, mechanical properties and cyclization behaviors of polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers prepared by plasticized spinning.
    Li X; Qin A; Zhao X; Liu D; Wang H; He C
    Phys Chem Chem Phys; 2015 Sep; 17(34):21856-65. PubMed ID: 26235219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dry-Jet Wet Spinning of Thermally Stable Lignin-Textile Grade Polyacrylonitrile Fibers Regenerated from Chloride-Based Ionic Liquids Compounds.
    Al Aiti M; Das A; Kanerva M; Järventausta M; Johansson P; Scheffler C; Göbel M; Jehnichen D; Brünig H; Wulff L; Boye S; Arnhold K; Kuusipalo J; Heinrich G
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ compatibilized starch/polyacylonitrile composite fiber fabricated via dry-wet spinning technique.
    Wang F; Chang L; Wang L; Gong Y; Guo Y; Shi Q; Quan F
    Int J Biol Macromol; 2022 Jul; 212():412-419. PubMed ID: 35577192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyacrylonitrile Fibers with a Gradient Silica Distribution as Precursors of Carbon-Silicon-Carbide Fibers.
    Varfolomeeva LA; Skvortsov IY; Levin IS; Shandryuk GA; Patsaev TD; Kulichikhin VG
    Polymers (Basel); 2023 Jun; 15(11):. PubMed ID: 37299378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of Conductive Polyacrylonitrile Fibers Prepared by Using Benzoxazine Modified Carbon Black.
    Ahn D; Choi HJ; Kim HD; Yeo SY
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Structure and Properties of Polyacrylonitrile Nascent Composite Fibers with Grafted Multi Walled Carbon Nanotubes Prepared by Wet Spinning Method.
    Zhang H; Quan L; Gao A; Tong Y; Shi F; Xu L
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Impact of Shear and Elongational Forces on Structural Formation of Polyacrylonitrile/Carbon Nanotubes Composite Fibers during Wet Spinning Process.
    Mirbaha H; Nourpanah P; Scardi P; D'incau M; Greco G; Valentini L; Bittolo Bon S; Arbab S; Pugno N
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31480253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and Mechanical Properties of Polyacrylonitrile Precursor Fiber with Dry and Wet Drawing Process.
    Ahn H; Wee JH; Kim YM; Yu WR; Yeo SY
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34067591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melt-Spinnable Polyacrylonitrile-An Alternative Carbon Fiber Precursor.
    Chernikova EV; Osipova NI; Plutalova AV; Toms RV; Gervald AY; Prokopov NI; Kulichikhin VG
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melt-Spinning of an Intrinsically Flame-Retardant Polyacrylonitrile Copolymer.
    König S; Kreis P; Herbert C; Wego A; Steinmann M; Wang D; Frank E; Buchmeiser MR
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33126721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Preparation and Characterization of Polyacrylonitrile-Polyaniline (PAN/PANI) Fibers.
    Karbownik I; Rac-Rumijowska O; Fiedot-Toboła M; Rybicki T; Teterycz H
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30813349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Transformation of Polyacrylonitrile (PAN) Fibers during Rapid Thermal Pretreatment in Nitrogen Atmosphere.
    Dang W; Liu J; Wang X; Yan K; Zhang A; Yang J; Chen L; Liang J
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31906379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanofibers based carbon-carbon composite fibers.
    Hiremath N; Bhat S; Boy R; Evora MC; Naskar AK; Mays J; Bhat G
    Discov Nano; 2023 Dec; 18(1):159. PubMed ID: 38127269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological Behavior of Amino-Functionalized Multi-Walled Carbon Nanotube/Polyacrylonitrile Concentrated Solutions and Crystal Structure of Composite Fibers.
    Zhang H; Quan L; Shi F; Li C; Liu H; Xu L
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring.
    Alarifi IM; Alharbi A; Khan WS; Swindle A; Asmatulu R
    Materials (Basel); 2015 Oct; 8(10):7017-7031. PubMed ID: 28793615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, Stabilization and Carbonization of a Novel Polyacrylonitrile-Based Carbon Fiber Precursor.
    Liu H; Zhang S; Yang J; Ji M; Yu J; Wang M; Chai X; Yang B; Zhu C; Xu J
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31277462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of electrospun polyacrylonitrile- derived carbon fibers and comparison of properties with bulk form.
    Alarifi IM; Khan WS; Asmatulu R
    PLoS One; 2018; 13(8):e0201345. PubMed ID: 30091992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.