These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 31977184)
1. Gold Nanoparticle Aggregation-Induced Quantitative Photothermal Biosensing Using a Thermometer: A Simple and Universal Biosensing Platform. Zhou W; Hu K; Kwee S; Tang L; Wang Z; Xia J; Li X Anal Chem; 2020 Feb; 92(3):2739-2747. PubMed ID: 31977184 [TBL] [Abstract][Full Text] [Related]
2. Target-triggered aggregation of gold nanoparticles for photothermal quantitative detection of adenosine using a thermometer as readout. Tao Y; Luo F; Guo L; Qiu B; Lin Z Anal Chim Acta; 2020 May; 1110():151-157. PubMed ID: 32278390 [TBL] [Abstract][Full Text] [Related]
3. Low-Cost Quantitative Photothermal Genetic Detection of Pathogens on a Paper Hybrid Device Using a Thermometer. Zhou W; Sun J; Li X Anal Chem; 2020 Nov; 92(21):14830-14837. PubMed ID: 33059447 [TBL] [Abstract][Full Text] [Related]
4. Rapid photothermal detection of foodborne pathogens based on the aggregation of MPBA-AuNPs induced by MPBA using a thermometer as a readout. Zheng L; Dong W; Zheng C; Shen Y; Zhou R; Wei Z; Chen Z; Lou Y Colloids Surf B Biointerfaces; 2022 Apr; 212():112349. PubMed ID: 35101823 [TBL] [Abstract][Full Text] [Related]
5. A direct detection of Escherichia coli genomic DNA using gold nanoprobes. Padmavathy B; Vinoth Kumar R; Jaffar Ali BM J Nanobiotechnology; 2012 Feb; 10():8. PubMed ID: 22309695 [TBL] [Abstract][Full Text] [Related]
6. Ultrasensitive electrochemical detection of Mycobacterium tuberculosis IS6110 fragment using gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet as signal tags. Bai L; Chen Y; Liu X; Zhou J; Cao J; Hou L; Guo S Anal Chim Acta; 2019 Nov; 1080():75-83. PubMed ID: 31409477 [TBL] [Abstract][Full Text] [Related]
7. An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle-polyaniline nanocomposite. Liu C; Jiang D; Xiang G; Liu L; Liu F; Pu X Analyst; 2014 Nov; 139(21):5460-5. PubMed ID: 25171135 [TBL] [Abstract][Full Text] [Related]
8. Colorimetric biosensing of targeted gene sequence using dual nanoparticle platforms. Thavanathan J; Huang NM; Thong KL Int J Nanomedicine; 2015; 10():2711-22. PubMed ID: 25897217 [TBL] [Abstract][Full Text] [Related]
9. Photothermal biosensor for HPV16 based on strand-displacement amplification and gold nanoparticles using a thermometer as readout. Yan B; Li M; Luo F; Jin X; Qiu B; Lin Z Mikrochim Acta; 2022 Nov; 189(11):437. PubMed ID: 36319894 [TBL] [Abstract][Full Text] [Related]
10. Tuning the Gold Nanoparticle Colorimetric Assay by Nanoparticle Size, Concentration, and Size Combinations for Oligonucleotide Detection. Godakhindi VS; Kang P; Serre M; Revuru NA; Zou JM; Roner MR; Levitz R; Kahn JS; Randrianalisoa J; Qin Z ACS Sens; 2017 Nov; 2(11):1627-1636. PubMed ID: 28994578 [TBL] [Abstract][Full Text] [Related]
11. Sensitive biosensor for p53 DNA sequence based on the photothermal effect of gold nanoparticles and the signal amplification of locked nucleic acid functionalized DNA walkers using a thermometer as readout. Tao Y; Wang W; Fu C; Luo F; Guo L; Qiu B; Lin Z Talanta; 2020 Dec; 220():121398. PubMed ID: 32928417 [TBL] [Abstract][Full Text] [Related]
12. Portable and quantitative detection of carbendazim based on the readout of a thermometer. Fu R; Zhou J; Liu Y; Wang Y; Liu H; Pang J; Cui Y; Zhao Q; Wang C; Li Z; Jiao B; He Y Food Chem; 2021 Jul; 351():129292. PubMed ID: 33626465 [TBL] [Abstract][Full Text] [Related]
13. Quantifying the photothermal efficiency of gold nanoparticles using tryptophan as an in situ fluorescent thermometer. Chiu MJ; Chu LK Phys Chem Chem Phys; 2015 Jul; 17(26):17090-100. PubMed ID: 26068797 [TBL] [Abstract][Full Text] [Related]
14. Plasmonic Cross-Linking Colorimetric PCR for Simple and Sensitive Nucleic Acid Detection. Jiang K; Wu J; Kim JE; An S; Nam JM; Peng YK; Lee JH Nano Lett; 2023 May; 23(9):3897-3903. PubMed ID: 37083438 [TBL] [Abstract][Full Text] [Related]
15. Designed diblock hairpin probes for the nonenzymatic and label-free detection of nucleic acid. Wen J; Chen J; Zhuang L; Zhou S Biosens Bioelectron; 2016 May; 79():656-60. PubMed ID: 26765529 [TBL] [Abstract][Full Text] [Related]
16. A portable immune-thermometer assay based on the photothermal effect of graphene oxides for the rapid detection of Salmonella typhimurium. Du S; Wang Y; Liu Z; Xu Z; Zhang H Biosens Bioelectron; 2019 Nov; 144():111670. PubMed ID: 31520965 [TBL] [Abstract][Full Text] [Related]
17. Photothermal immunoassay for carcinoembryonic antigen based on the inhibition of cysteine-induced aggregation of gold nanoparticles by copper ion using a common thermometer as readout. Tao Y; Shi W; Luo F; Qiu B; Lin Z Anal Chim Acta; 2021 Oct; 1181():338929. PubMed ID: 34556217 [TBL] [Abstract][Full Text] [Related]
18. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering. Khalil I; Yehye WA; Julkapli NM; Rahmati S; Sina AA; Basirun WJ; Johan MR Biosens Bioelectron; 2019 Apr; 131():214-223. PubMed ID: 30844598 [TBL] [Abstract][Full Text] [Related]
19. Lateral flow biosensors for the detection of nucleic acid. Zeng L; Lie P; Fang Z; Xiao Z Methods Mol Biol; 2013; 1039():161-7. PubMed ID: 24026695 [TBL] [Abstract][Full Text] [Related]
20. Smart DNA-gold nanoparticle hybrid hydrogel film based portable, cost-effective and storable biosensing system for the colorimetric detection of lead (II) and uranyl ions. Liu C; Gou S; Bi Y; Gao Q; Sun J; Hu S; Guo W Biosens Bioelectron; 2022 Aug; 210():114290. PubMed ID: 35489275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]