BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31977216)

  • 1. Boosting Tree-Assisted Multitask Deep Learning for Small Scientific Datasets.
    Jiang J; Wang R; Wang M; Gao K; Nguyen DD; Wei GW
    J Chem Inf Model; 2020 Mar; 60(3):1235-1244. PubMed ID: 31977216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Toxicity Prediction Using Topology Based Multitask Deep Neural Networks.
    Wu K; Wei GW
    J Chem Inf Model; 2018 Feb; 58(2):520-531. PubMed ID: 29314829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting potential miRNA-disease associations by combining gradient boosting decision tree with logistic regression.
    Zhou S; Wang S; Wu Q; Azim R; Li W
    Comput Biol Chem; 2020 Apr; 85():107200. PubMed ID: 32058946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TopP-S: Persistent homology-based multi-task deep neural networks for simultaneous predictions of partition coefficient and aqueous solubility.
    Wu K; Zhao Z; Wang R; Wei GW
    J Comput Chem; 2018 Jul; 39(20):1444-1454. PubMed ID: 29633287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning curves for drug response prediction in cancer cell lines.
    Partin A; Brettin T; Evrard YA; Zhu Y; Yoo H; Xia F; Jiang S; Clyde A; Shukla M; Fonstein M; Doroshow JH; Stevens RL
    BMC Bioinformatics; 2021 May; 22(1):252. PubMed ID: 34001007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multitask deep learning with dynamic task balancing for quantum mechanical properties prediction.
    Yang Z; Zhong W; Lv Q; Chen CY
    Phys Chem Chem Phys; 2022 Mar; 24(9):5383-5393. PubMed ID: 35169821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Large-Scale Multitask Learning Network for Gene Expression Inference.
    Dizaji KG; Chen W; Huang H
    J Comput Biol; 2021 May; 28(5):485-500. PubMed ID: 34014778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach.
    Ichikawa D; Saito T; Ujita W; Oyama H
    J Biomed Inform; 2016 Dec; 64():20-24. PubMed ID: 27658886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database.
    Chen-Ying Hung ; Wei-Chen Chen ; Po-Tsun Lai ; Ching-Heng Lin ; Chi-Chun Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3110-3113. PubMed ID: 29060556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted transfer learning to improve performance in small medical physics datasets.
    Romero M; Interian Y; Solberg T; Valdes G
    Med Phys; 2020 Dec; 47(12):6246-6256. PubMed ID: 33007112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data.
    Ding DY; Simpson C; Pfohl S; Kale DC; Jung K; Shah NH
    Pac Symp Biocomput; 2019; 24():18-29. PubMed ID: 30864307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning framework for accurately recognizing circular RNAs for clinical decision-supporting.
    Wang Y; Zhang X; Wang T; Xing J; Wu Z; Li W; Wang J
    BMC Med Inform Decis Mak; 2020 Jul; 20(Suppl 3):137. PubMed ID: 32646420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Future Driving Risk of Crash-Involved Drivers Based on a Systematic Machine Learning Framework.
    Wang C; Liu L; Xu C; Lv W
    Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30691063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An extensive experimental survey of regression methods.
    Fernández-Delgado M; Sirsat MS; Cernadas E; Alawadi S; Barro S; Febrero-Bande M
    Neural Netw; 2019 Mar; 111():11-34. PubMed ID: 30654138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BOW-GBDT: A GBDT Classifier Combining With Artificial Neural Network for Identifying GPCR-Drug Interaction Based on Wordbook Learning From Sequences.
    Qiu W; Lv Z; Hong Y; Jia J; Xiao X
    Front Cell Dev Biol; 2020; 8():623858. PubMed ID: 33598456
    [No Abstract]   [Full Text] [Related]  

  • 18. In Silico Prediction of Gamma-Aminobutyric Acid Type-A Receptors Using Novel Machine-Learning-Based SVM and GBDT Approaches.
    Liao Z; Huang Y; Yue X; Lu H; Xuan P; Ju Y
    Biomed Res Int; 2016; 2016():2375268. PubMed ID: 27579307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep neural network approach to predicting clinical outcomes of neuroblastoma patients.
    Tranchevent LC; Azuaje F; Rajapakse JC
    BMC Med Genomics; 2019 Dec; 12(Suppl 8):178. PubMed ID: 31856829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are 2D fingerprints still valuable for drug discovery?
    Gao K; Nguyen DD; Sresht V; Mathiowetz AM; Tu M; Wei GW
    Phys Chem Chem Phys; 2020 Apr; 22(16):8373-8390. PubMed ID: 32266895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.