These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31977216)

  • 21. Multitask Coupled Logistic Regression and its Fast Implementation for Large Multitask Datasets.
    Gu X; Chung FL; Ishibuchi H; Wang S
    IEEE Trans Cybern; 2015 Sep; 45(9):1953-66. PubMed ID: 25423663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GGL-Tox: Geometric Graph Learning for Toxicity Prediction.
    Jiang J; Wang R; Wei GW
    J Chem Inf Model; 2021 Apr; 61(4):1691-1700. PubMed ID: 33719422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cognition-Enhanced Machine Learning for Better Predictions with Limited Data.
    Sense F; Wood R; Collins MG; Fiechter J; Wood A; Krusmark M; Jastrzembski T; Myers CW
    Top Cogn Sci; 2022 Oct; 14(4):739-755. PubMed ID: 34529347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes.
    Abdollahi-Arpanahi R; Gianola D; Peñagaricano F
    Genet Sel Evol; 2020 Feb; 52(1):12. PubMed ID: 32093611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benchmarking deep learning models on large healthcare datasets.
    Purushotham S; Meng C; Che Z; Liu Y
    J Biomed Inform; 2018 Jul; 83():112-134. PubMed ID: 29879470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A viral protein identifying framework based on temporal convolutional network.
    Zhao HY; Che C; Jin B; Wei XP
    Math Biosci Eng; 2019 Feb; 16(3):1709-1717. PubMed ID: 30947439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of Human Cytochrome P450 Inhibition Using a Multitask Deep Autoencoder Neural Network.
    Li X; Xu Y; Lai L; Pei J
    Mol Pharm; 2018 Oct; 15(10):4336-4345. PubMed ID: 29775322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Learning and Computational Chemistry.
    James T; Hristozov D
    Methods Mol Biol; 2022; 2390():125-151. PubMed ID: 34731467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative Study of Multitask Toxicity Modeling on a Broad Chemical Space.
    Sosnin S; Karlov D; Tetko IV; Fedorov MV
    J Chem Inf Model; 2019 Mar; 59(3):1062-1072. PubMed ID: 30589269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis.
    Zhang E; Seiler S; Chen M; Lu W; Gu X
    Phys Med Biol; 2020 Jun; 65(12):125005. PubMed ID: 32155605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep learning with sentence embeddings pre-trained on biomedical corpora improves the performance of finding similar sentences in electronic medical records.
    Chen Q; Du J; Kim S; Wilbur WJ; Lu Z
    BMC Med Inform Decis Mak; 2020 Apr; 20(Suppl 1):73. PubMed ID: 32349758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ACP-GBDT: An improved anticancer peptide identification method with gradient boosting decision tree.
    Li Y; Ma D; Chen D; Chen Y
    Front Genet; 2023; 14():1165765. PubMed ID: 37065496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eye-color and Type-2 diabetes phenotype prediction from genotype data using deep learning methods.
    Muneeb M; Henschel A
    BMC Bioinformatics; 2021 Apr; 22(1):198. PubMed ID: 33874881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid deep learning approach to improve classification of low-volume high-dimensional data.
    Mavaie P; Holder L; Skinner MK
    BMC Bioinformatics; 2023 Nov; 24(1):419. PubMed ID: 37936066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluating shallow and deep learning strategies for the 2018 n2c2 shared task on clinical text classification.
    Oleynik M; Kugic A; Kasáč Z; Kreuzthaler M
    J Am Med Inform Assoc; 2019 Nov; 26(11):1247-1254. PubMed ID: 31512729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Learning Generalizable Recurrent Neural Networks from Small Task-fMRI Datasets.
    Dvornek NC; Yang D; Ventola P; Duncan JS
    Med Image Comput Comput Assist Interv; 2018 Sep; 11072():329-337. PubMed ID: 30873514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MARSY: a multitask deep-learning framework for prediction of drug combination synergy scores.
    El Khili MR; Memon SA; Emad A
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37021933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility.
    Chen W; Lei X; Chakrabortty R; Chandra Pal S; Sahana M; Janizadeh S
    J Environ Manage; 2021 Apr; 284():112015. PubMed ID: 33515838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Multitask Approach to Learn Molecular Properties.
    Tan Z; Li Y; Shi W; Yang S
    J Chem Inf Model; 2021 Aug; 61(8):3824-3834. PubMed ID: 34289687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images.
    Brehar R; Mitrea DA; Vancea F; Marita T; Nedevschi S; Lupsor-Platon M; Rotaru M; Badea RI
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.