These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 31977254)
1. Artificial Intelligence Tool for Optimizing Eligibility Screening for Clinical Trials in a Large Community Cancer Center. Beck JT; Rammage M; Jackson GP; Preininger AM; Dankwa-Mullan I; Roebuck MC; Torres A; Holtzen H; Coverdill SE; Williamson MP; Chau Q; Rhee K; Vinegra M JCO Clin Cancer Inform; 2020 Jan; 4():50-59. PubMed ID: 31977254 [TBL] [Abstract][Full Text] [Related]
2. Increasing the efficiency of trial-patient matching: automated clinical trial eligibility pre-screening for pediatric oncology patients. Ni Y; Wright J; Perentesis J; Lingren T; Deleger L; Kaiser M; Kohane I; Solti I BMC Med Inform Decis Mak; 2015 Apr; 15():28. PubMed ID: 25881112 [TBL] [Abstract][Full Text] [Related]
3. [Development of an artificial intelligence system to improve cancer clinical trial eligibility screening]. Gédor M; Desandes E; Chesnel M; Merlin JL; Marchal F; Lambert A; Baudin A Bull Cancer; 2024 May; 111(5):473-482. PubMed ID: 38503584 [TBL] [Abstract][Full Text] [Related]
4. Accuracy of an Artificial Intelligence System for Cancer Clinical Trial Eligibility Screening: Retrospective Pilot Study. Haddad T; Helgeson JM; Pomerleau KE; Preininger AM; Roebuck MC; Dankwa-Mullan I; Jackson GP; Goetz MP JMIR Med Inform; 2021 Mar; 9(3):e27767. PubMed ID: 33769304 [TBL] [Abstract][Full Text] [Related]
5. Piloting an automated clinical trial eligibility surveillance and provider alert system based on artificial intelligence and standard data models. Meystre SM; Heider PM; Cates A; Bastian G; Pittman T; Gentilin S; Kelechi TJ BMC Med Res Methodol; 2023 Apr; 23(1):88. PubMed ID: 37041475 [TBL] [Abstract][Full Text] [Related]
6. Supporting patient screening to identify suitable clinical trials. Bucur A; Van Leeuwen J; Chen NZ; Claerhout B; De Schepper K; Perez-Rey D; Alonso-Calvo R; Pugliano L; Saini K Stud Health Technol Inform; 2014; 205():823-7. PubMed ID: 25160302 [TBL] [Abstract][Full Text] [Related]
7. Automated classification of eligibility criteria in clinical trials to facilitate patient-trial matching for specific patient populations. Zhang K; Demner-Fushman D J Am Med Inform Assoc; 2017 Jul; 24(4):781-787. PubMed ID: 28339690 [TBL] [Abstract][Full Text] [Related]
8. Textual inference for eligibility criteria resolution in clinical trials. Shivade C; Hebert C; Lopetegui M; de Marneffe MC; Fosler-Lussier E; Lai AM J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S211-S218. PubMed ID: 26376462 [TBL] [Abstract][Full Text] [Related]
9. Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for clinical trials in the emergency department. Ni Y; Kennebeck S; Dexheimer JW; McAneney CM; Tang H; Lingren T; Li Q; Zhai H; Solti I J Am Med Inform Assoc; 2015 Jan; 22(1):166-78. PubMed ID: 25030032 [TBL] [Abstract][Full Text] [Related]
10. Automatic trial eligibility surveillance based on unstructured clinical data. Meystre SM; Heider PM; Kim Y; Aruch DB; Britten CD Int J Med Inform; 2019 Sep; 129():13-19. PubMed ID: 31445247 [TBL] [Abstract][Full Text] [Related]
11. Automated Matching of Patients to Clinical Trials: A Patient-Centric Natural Language Processing Approach for Pediatric Leukemia. Kaskovich S; Wyatt KD; Oliwa T; Graglia L; Furner B; Lee J; Mayampurath A; Volchenboum SL JCO Clin Cancer Inform; 2023 Jul; 7():e2300009. PubMed ID: 37428994 [TBL] [Abstract][Full Text] [Related]
12. Automatic data source identification for clinical trial eligibility criteria resolution. Shivade C; Hebert C; Regan K; Fosler-Lussier E; Lai AM AMIA Annu Symp Proc; 2016; 2016():1149-1158. PubMed ID: 28269912 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of an artificial intelligence-based clinical trial matching system in Chinese patients with hepatocellular carcinoma: a retrospective study. Wang K; Cui H; Zhu Y; Hu X; Hong C; Guo Y; An L; Zhang Q; Liu L BMC Cancer; 2024 Feb; 24(1):246. PubMed ID: 38388861 [TBL] [Abstract][Full Text] [Related]
14. Machine learning and natural language processing in clinical trial eligibility criteria parsing: a scoping review. Kantor K; Morzy M Drug Discov Today; 2024 Oct; 29(10):104139. PubMed ID: 39154773 [TBL] [Abstract][Full Text] [Related]
15. A review of research on eligibility criteria for clinical trials. Su Q; Cheng G; Huang J Clin Exp Med; 2023 Oct; 23(6):1867-1879. PubMed ID: 36602707 [TBL] [Abstract][Full Text] [Related]
16. Pancreatic Cancer Clinical Treatment Trials Accrual: A Closer Look at Participation Rates. Guerra CE; Kelly S; Redlinger C; Hernández P; Glanz K Am J Clin Oncol; 2021 Jun; 44(6):227-231. PubMed ID: 33710138 [TBL] [Abstract][Full Text] [Related]
17. Parsable Clinical Trial Eligibility Criteria Representation Using Natural Language Processing. Kim J; Izower M; Quintana Y AMIA Annu Symp Proc; 2022; 2022():616-624. PubMed ID: 37128426 [TBL] [Abstract][Full Text] [Related]
18. EliIE: An open-source information extraction system for clinical trial eligibility criteria. Kang T; Zhang S; Tang Y; Hruby GW; Rusanov A; Elhadad N; Weng C J Am Med Inform Assoc; 2017 Nov; 24(6):1062-1071. PubMed ID: 28379377 [TBL] [Abstract][Full Text] [Related]
19. Improving Clinical Trial Participant Prescreening With Artificial Intelligence (AI): A Comparison of the Results of AI-Assisted vs Standard Methods in 3 Oncology Trials. Calaprice-Whitty D; Galil K; Salloum W; Zariv A; Jimenez B Ther Innov Regul Sci; 2020 Jan; 54(1):69-74. PubMed ID: 32008227 [TBL] [Abstract][Full Text] [Related]