BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

565 related articles for article (PubMed ID: 31977603)

  • 1. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans.
    Fujita S; Hagiwara A; Otsuka Y; Hori M; Takei N; Hwang KP; Irie R; Andica C; Kamagata K; Akashi T; Kunishima Kumamaru K; Suzuki M; Wada A; Abe O; Aoki S
    Invest Radiol; 2020 Apr; 55(4):249-256. PubMed ID: 31977603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic Time of Flight Magnetic Resonance Angiography Generation Model Based on Cycle-Consistent Generative Adversarial Network Using PETRA-MRA in the Patients With Treated Intracranial Aneurysm.
    You SH; Cho Y; Kim B; Yang KS; Kim BK; Park SE
    J Magn Reson Imaging; 2022 Nov; 56(5):1513-1528. PubMed ID: 35142407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing.
    Lin Z; Zhang X; Guo L; Wang K; Jiang Y; Hu X; Huang Y; Wei J; Ma S; Liu Y; Zhu L; Zhuo Z; Liu J; Wang X
    J Magn Reson Imaging; 2019 Dec; 50(6):1843-1851. PubMed ID: 30980468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Added diagnostic values of three-dimensional high-resolution proton density-weighted magnetic resonance imaging for unruptured intracranial aneurysms in the circle-of-Willis: Comparison with time-of-flight magnetic resonance angiography.
    Yim Y; Jung SC; Kim JY; Kim SO; Kim BJ; Lee DH; Park W; Park JC; Ahn JS
    PLoS One; 2020; 15(12):e0243235. PubMed ID: 33270756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms.
    Cirillo M; Scomazzoni F; Cirillo L; Cadioli M; Simionato F; Iadanza A; Kirchin M; Righi C; Anzalone N
    Eur J Radiol; 2013 Dec; 82(12):e853-9. PubMed ID: 24103356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel imaging in time-of-flight magnetic resonance angiography using deep multistream convolutional neural networks.
    Jun Y; Eo T; Shin H; Kim T; Lee HJ; Hwang D
    Magn Reson Med; 2019 Jun; 81(6):3840-3853. PubMed ID: 30666723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast Intracranial Vessel Imaging With Non-Cartesian Spiral 3-Dimensional Time-of-Flight Magnetic Resonance Angiography at 1.5 T: An In Vitro and Clinical Study in Healthy Volunteers.
    Sartoretti T; van Smoorenburg L; Sartoretti E; Schwenk Á; Binkert CA; Kulcsár Z; Becker AS; Graf N; Wyss M; Sartoretti-Schefer S
    Invest Radiol; 2020 May; 55(5):293-303. PubMed ID: 31895223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical evaluation of subtracted pointwise encoding time reduction with radial acquisition-based magnetic resonance angiography compared to 3D time-of-flight magnetic resonance angiography for improved flow dephasing at 3 Tesla.
    Fu Q; Zhang XY; Deng XB; Liu DX
    Magn Reson Imaging; 2020 Nov; 73():104-110. PubMed ID: 32858182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A coarse-to-fine cascade deep learning neural network for segmenting cerebral aneurysms in time-of-flight magnetic resonance angiography.
    Chen M; Geng C; Wang D; Zhou Z; Di R; Li F; Piao S; Zhang J; Li Y; Dai Y
    Biomed Eng Online; 2022 Sep; 21(1):71. PubMed ID: 36163014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surveillance of Unruptured Intracranial Saccular Aneurysms Using Noncontrast 3D-Black-Blood MRI: Comparison of 3D-TOF and Contrast-Enhanced MRA with 3D-DSA.
    Zhu C; Wang X; Eisenmenger L; Tian B; Liu Q; Degnan AJ; Hess C; Saloner D; Lu J
    AJNR Am J Neuroradiol; 2019 Jun; 40(6):960-966. PubMed ID: 31122914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfusion Maps Acquired From Dynamic Angiography MRI Using Deep Learning Approaches.
    Asaduddin M; Roh HG; Kim HJ; Kim EY; Park SH
    J Magn Reson Imaging; 2023 Feb; 57(2):456-469. PubMed ID: 35726646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-resolution application of generative adversarial network on brain time-of-flight MR angiography: image quality and diagnostic utility evaluation.
    Wicaksono KP; Fujimoto K; Fushimi Y; Sakata A; Okuchi S; Hinoda T; Nakajima S; Yamao Y; Yoshida K; Miyake KK; Numamoto H; Saga T; Nakamoto Y
    Eur Radiol; 2023 Feb; 33(2):936-946. PubMed ID: 36006430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of quantification maps and weighted images from synthetic magnetic resonance imaging using deep learning network.
    Liu Y; Niu H; Ren P; Ren J; Wei X; Liu W; Ding H; Li J; Xia J; Zhang T; Lv H; Yin H; Wang Z
    Phys Med Biol; 2022 Jan; 67(2):. PubMed ID: 34965516
    [No Abstract]   [Full Text] [Related]  

  • 14. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience.
    Mönninghoff C; Maderwald S; Theysohn JM; Kraff O; Ladd SC; Ladd ME; Forsting M; Quick HH; Wanke I
    Rofo; 2009 Jan; 181(1):16-23. PubMed ID: 19115164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the inflow zone of unruptured cerebral aneurysms: comparison of 4D flow MRI and 3D TOF MRA data.
    Futami K; Sano H; Misaki K; Nakada M; Ueda F; Hamada J
    AJNR Am J Neuroradiol; 2014 Jul; 35(7):1363-70. PubMed ID: 24610906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3 T contrast-enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time-of-flight magnetic resonance angiography and multislice computed tomography angiography.
    Villablanca JP; Nael K; Habibi R; Nael A; Laub G; Finn JP
    Invest Radiol; 2006 Nov; 41(11):799-805. PubMed ID: 17035870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized 4D time-of-flight MR angiography using saturation pulse.
    Shibukawa S; Nishio H; Niwa T; Obara M; Miyati T; Hara T; Imai Y; Muro I
    J Magn Reson Imaging; 2016 Jun; 43(6):1320-6. PubMed ID: 26666670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography.
    Nakao T; Hanaoka S; Nomura Y; Sato I; Nemoto M; Miki S; Maeda E; Yoshikawa T; Hayashi N; Abe O
    J Magn Reson Imaging; 2018 Apr; 47(4):948-953. PubMed ID: 28836310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does black blood MRA have a role in the assessment of intracerebral aneurysms?
    Stivaros SM; Harris JN; Adams W; Jackson A
    Eur Radiol; 2009 Jan; 19(1):184-92. PubMed ID: 18690453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers.
    Kidoh M; Shinoda K; Kitajima M; Isogawa K; Nambu M; Uetani H; Morita K; Nakaura T; Tateishi M; Yamashita Y; Yamashita Y
    Magn Reson Med Sci; 2020 Aug; 19(3):195-206. PubMed ID: 31484849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.