These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31978051)

  • 1. Kinematic analysis of motor learning in upper limb body-powered bypass prosthesis training.
    Bloomer C; Wang S; Kontson K
    PLoS One; 2020; 15(1):e0226563. PubMed ID: 31978051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of range-of-motion and variability in upper body movements between transradial prosthesis users and able-bodied controls when executing goal-oriented tasks.
    Major MJ; Stine RL; Heckathorne CW; Fatone S; Gard SA
    J Neuroeng Rehabil; 2014 Sep; 11():132. PubMed ID: 25192744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of machine learning to the identification of joint degrees of freedom involved in abnormal movement during upper limb prosthesis use.
    Wang SL; Bloomer C; Civillico G; Kontson K
    PLoS One; 2021; 16(2):e0246795. PubMed ID: 33571311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing kinematic variability during performance of Jebsen-Taylor Hand Function Test.
    Kontson KL; Wang S; Barovsky S; Bloomer C; Wozniczka L; Civillico EF
    J Hand Ther; 2020; 33(1):34-44. PubMed ID: 30857890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Neurobehavioral Outcomes of Action Observation Prosthesis Training.
    Cusack WF; Thach S; Patterson R; Acker D; Kistenberg RS; Wheaton LA
    Neurorehabil Neural Repair; 2016 Jul; 30(6):573-82. PubMed ID: 26438442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical analysis of users of multi-articulating externally powered prostheses with and without their device.
    Wanamaker AB; Whelan LR; Farley J; Chaudhari AM
    Prosthet Orthot Int; 2019 Dec; 43(6):618-628. PubMed ID: 31466507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensatory strategies of body-powered prosthesis users reveal primary reliance on trunk motion and relation to skill level.
    Valevicius AM; Boser QA; Chapman CS; Pilarski PM; Vette AH; Hebert JS
    Clin Biomech (Bristol, Avon); 2020 Feb; 72():122-129. PubMed ID: 31862606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the type of training task on intermanual transfer effects in upper-limb prosthesis training: A randomized pre-posttest study.
    Romkema S; Bongers RM; van der Sluis CK
    PLoS One; 2017; 12(11):e0188362. PubMed ID: 29190727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning to use a body-powered prosthesis: changes in functionality and kinematics.
    Huinink LH; Bouwsema H; Plettenburg DH; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2016 Oct; 13(1):90. PubMed ID: 27716254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Categorization of compensatory motions in transradial myoelectric prosthesis users.
    Hussaini A; Zinck A; Kyberd P
    Prosthet Orthot Int; 2017 Jun; 41(3):286-293. PubMed ID: 27473642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of body-powered upper limb prostheses by able-bodied subjects, using the Box and Blocks Test and the Nine-Hole Peg Test.
    Haverkate L; Smit G; Plettenburg DH
    Prosthet Orthot Int; 2016 Feb; 40(1):109-16. PubMed ID: 25336050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of mirror therapy and motor imagery on intermanual transfer effects in upper-limb prosthesis training of healthy participants: A randomized pre-posttest study.
    Romkema S; Bongers RM; van der Sluis CK
    PLoS One; 2018; 13(10):e0204839. PubMed ID: 30300378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of DEKA Arm and Body-Powered Upper Limb Prosthesis Joint Kinematics.
    Bloomer C; Kontson KL
    Arch Rehabil Res Clin Transl; 2020 Sep; 2(3):100057. PubMed ID: 33543084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of order of practice in learning to handle an upper-limb prosthesis.
    Bouwsema H; van der Sluis CK; Bongers RM
    Arch Phys Med Rehabil; 2008 Sep; 89(9):1759-64. PubMed ID: 18675393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential experiences of embodiment between body-powered and myoelectric prosthesis users.
    Engdahl SM; Meehan SK; Gates DH
    Sci Rep; 2020 Sep; 10(1):15471. PubMed ID: 32963290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transhumeral prosthesis use affects upper body kinematics and kinetics.
    Dunn JA; Gomez NG; Wong B; Sinclair SK; Henninger HB; Foreman KB; Bachus KN
    Gait Posture; 2024 Jul; 112():59-66. PubMed ID: 38744022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor performance benefits of matched limb imitation in prosthesis users.
    Cusack WF; Patterson R; Thach S; Kistenberg RS; Wheaton LA
    Exp Brain Res; 2014 Jul; 232(7):2143-54. PubMed ID: 24643547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic comparison of myoelectric and body powered prostheses while performing common activities.
    Carey SL; Dubey RV; Bauer GS; Highsmith MJ
    Prosthet Orthot Int; 2009 Jun; 33(2):179-86. PubMed ID: 19367522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical evaluation of the refined clothespin relocation test: A pilot study.
    Hussaini A; Hill W; Kyberd P
    Prosthet Orthot Int; 2019 Oct; 43(5):485-491. PubMed ID: 31264508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training with an upper-limb prosthetic simulator to enhance transfer of skill across limbs.
    Weeks DL; Wallace SA; Anderson DI
    Arch Phys Med Rehabil; 2003 Mar; 84(3):437-43. PubMed ID: 12638114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.