These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3197832)

  • 1. Protein secondary structure and homology by neural networks. The alpha-helices in rhodopsin.
    Bohr H; Bohr J; Brunak S; Cotterill RM; Lautrup B; Nørskov L; Olsen OH; Petersen SB
    FEBS Lett; 1988 Dec; 241(1-2):223-8. PubMed ID: 3197832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein secondary structure prediction with a neural network.
    Holley LH; Karplus M
    Proc Natl Acad Sci U S A; 1989 Jan; 86(1):152-6. PubMed ID: 2911565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicted alpha-helix/beta-sheet secondary structures for the zinc-binding motifs of human papillomavirus E7 and E6 proteins by consensus prediction averaging and spectroscopic studies of E7.
    Ullman CG; Haris PI; Galloway DA; Emery VC; Perkins SJ
    Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):229-39. PubMed ID: 8870673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodopsin's protein and carbohydrate structure: selected aspects.
    Hargrave PA; McDowell JH; Feldmann RJ; Atkinson PH; Rao JK; Argos P
    Vision Res; 1984; 24(11):1487-99. PubMed ID: 6533983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The secondary structure of the von Willebrand factor type A domain in factor B of human complement by Fourier transform infrared spectroscopy. Its occurrence in collagen types VI, VII, XII and XIV, the integrins and other proteins by averaged structure predictions.
    Perkins SJ; Smith KF; Williams SC; Haris PI; Chapman D; Sim RB
    J Mol Biol; 1994 Apr; 238(1):104-19. PubMed ID: 8145250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of rhodopsin: a template for cone visual pigments and other G protein-coupled receptors.
    Stenkamp RE; Filipek S; Driessen CA; Teller DC; Palczewski K
    Biochim Biophys Acta; 2002 Oct; 1565(2):168-82. PubMed ID: 12409193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the predicted secondary structure of bacteriorhodopsin. Prediction of the bovine rhodopsin secondary structure and its sequence similarity with bacteriorhodopsin.
    Nero TL; Louis WJ
    Biochem Int; 1992 Aug; 27(5):763-70. PubMed ID: 1417909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation of rhodopsin alpha-helices in in retinal rod outer segment membranes studied by infrared linear dichroism.
    Michel-Villaz M; Saibil HR; Chabre M
    Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4405-8. PubMed ID: 291972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicted secondary structure of glycogen phosphorylase from Escherichia coli as deduced using Chou-Fasman analysis.
    Venkaiah B; Kumar A
    Indian J Pathol Microbiol; 1991 Oct; 34(4):270-5. PubMed ID: 1818031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments.
    Riis SK; Krogh A
    J Comput Biol; 1996; 3(1):163-83. PubMed ID: 8697234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An algorithm for protein secondary structure prediction based on class prediction.
    Deléage G; Roux B
    Protein Eng; 1987; 1(4):289-94. PubMed ID: 3508279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Possible determination of the structural organization of bacterial and animal rhodopsins by the hydrophobicity of amino acid residues].
    Tarakhovskiĭ IuS
    Biofizika; 1984; 29(3):383-8. PubMed ID: 6466718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of amino acid patterns of classified helices and strands in secondary structure prediction.
    Zhu ZY; Blundell TL
    J Mol Biol; 1996 Jul; 260(2):261-76. PubMed ID: 8764405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unreliability of the Chou-Fasman parameters in predicting protein secondary structure.
    Kyngäs J; Valjakka J
    Protein Eng; 1998 May; 11(5):345-8. PubMed ID: 9681866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments.
    Kuwayama S; Imai H; Morizumi T; Shichida Y
    Biochemistry; 2005 Feb; 44(6):2208-15. PubMed ID: 15697246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined biophysical and biochemical information confirms arrangement of transmembrane helices visible from the three-dimensional map of frog rhodopsin.
    Herzyk P; Hubbard RE
    J Mol Biol; 1998 Aug; 281(4):741-54. PubMed ID: 9710543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary structure of the human membrane-associated folate binding protein using a joint prediction approach.
    Viswanadhan VN; Weinstein JN; Elwood PC
    J Biomol Struct Dyn; 1990 Feb; 7(4):985-1001. PubMed ID: 2310527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of the sixth transmembrane helix of the G-protein-coupled receptor, rhodopsin.
    Chopra A; Yeagle PL; Alderfer JA; Albert AD
    Biochim Biophys Acta; 2000 Jan; 1463(1):1-5. PubMed ID: 10631288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homology of the predicted secondary structures of the N-terminal fragments of preproteins.
    Tłomak P; Nowak K
    Acta Biochim Pol; 1981; 28(3-4):253-65. PubMed ID: 7342590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.