These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31978397)

  • 1. Amplitude Effects Allow Short Jet Lags and Large Seasonal Phase Shifts in Minimal Clock Models.
    Ananthasubramaniam B; Schmal C; Herzel H
    J Mol Biol; 2020 May; 432(12):3722-3737. PubMed ID: 31978397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From circadian clock mechanism to sleep disorders and jet lag: Insights from a computational approach.
    Goldbeter A; Leloup JC
    Biochem Pharmacol; 2021 Sep; 191():114482. PubMed ID: 33617843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reentrainment of the circadian pacemaker during jet lag: East-west asymmetry and the effects of north-south travel.
    Diekman CO; Bose A
    J Theor Biol; 2018 Jan; 437():261-285. PubMed ID: 28987464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerating recovery from jet lag: prediction from a multi-oscillator model and its experimental confirmation in model animals.
    Kori H; Yamaguchi Y; Okamura H
    Sci Rep; 2017 Apr; 7():46702. PubMed ID: 28443630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical phase shifts slow down circadian clock recovery: implications for jet lag.
    Leloup JC; Goldbeter A
    J Theor Biol; 2013 Sep; 333():47-57. PubMed ID: 23669506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arginine vasopressin signaling in the suprachiasmatic nucleus on the resilience of circadian clock to jet lag.
    Yamaguchi Y
    Neurosci Res; 2018 Apr; 129():57-61. PubMed ID: 29061320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation to experimental jet-lag in R6/2 mice despite circadian dysrhythmia.
    Wood NI; McAllister CJ; Cuesta M; Aungier J; Fraenkel E; Morton AJ
    PLoS One; 2013; 8(2):e55036. PubMed ID: 23390510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice.
    Iwamoto A; Kawai M; Furuse M; Yasuo S
    Chronobiol Int; 2014 Mar; 31(2):189-98. PubMed ID: 24147659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical analysis of the effects of circadian clock on the neurotransmitter dopamine.
    Li Y; Zhao Z; Tan YY; Wang X
    Math Biosci Eng; 2023 Aug; 20(9):16663-16677. PubMed ID: 37920028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network.
    Meijer JH; Michel S; Vanderleest HT; Rohling JH
    Eur J Neurosci; 2010 Dec; 32(12):2143-51. PubMed ID: 21143668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the phase of circadian entrainment.
    Bordyugov G; Abraham U; Granada A; Rose P; Imkeller K; Kramer A; Herzel H
    J R Soc Interface; 2015 Jul; 12(108):20150282. PubMed ID: 26136227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How jet lag impairs Major League Baseball performance.
    Song A; Severini T; Allada R
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1407-1412. PubMed ID: 28115724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical insights into the role of dopamine signaling in circadian entrainment.
    Kim R; Nijhout HF; Reed MC
    Math Biosci; 2023 Feb; 356():108956. PubMed ID: 36581152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgenic rats expressing dominant negative BMAL1 showed circadian clock amplitude reduction and rapid recovery from jet lag.
    Minami Y; Yoshikawa T; Nagano M; Koinuma S; Morimoto T; Fujioka A; Furukawa K; Ikegami K; Tatemizo A; Egawa K; Tamaru T; Taniguchi T; Shigeyoshi Y
    Eur J Neurosci; 2021 Mar; 53(6):1783-1793. PubMed ID: 33351992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gestational jet lag predisposes to later-life skeletal and cardiac disease.
    Chaves I; van der Eerden B; Boers R; Boers J; Streng AA; Ridwan Y; Schreuders-Koedam M; Vermeulen M; van der Pluijm I; Essers J; Gribnau J; Reiss IKM; van der Horst GTJ
    Chronobiol Int; 2019 May; 36(5):657-671. PubMed ID: 30793958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases.
    Rensing L; Ruoff P
    Chronobiol Int; 2002 Sep; 19(5):807-64. PubMed ID: 12405549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The seasons within: a theoretical perspective on photoperiodic entrainment and encoding.
    Schmal C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):549-564. PubMed ID: 37659985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the circadian clock: from molecular mechanism to physiological disorders.
    Leloup JC; Goldbeter A
    Bioessays; 2008 Jun; 30(6):590-600. PubMed ID: 18478538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chocolate for breakfast prevents circadian desynchrony in experimental models of jet-lag and shift-work.
    Escobar C; Espitia-Bautista E; Guzmán-Ruiz MA; Guerrero-Vargas NN; Hernández-Navarrete MÁ; Ángeles-Castellanos M; Morales-Pérez B; Buijs RM
    Sci Rep; 2020 Apr; 10(1):6243. PubMed ID: 32277140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian clock properties of fruit flies Drosophila melanogaster exhibiting early and late emergence chronotypes.
    Nikhil KL; Vaze KM; Ratna K; Sharma VK
    Chronobiol Int; 2016; 33(1):22-38. PubMed ID: 26654995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.