BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31978666)

  • 1. Assessing modified aluminum-based water treatment residuals as a plant-available phosphorus source.
    Banet T; Massey MS; Zohar I; Litaor MI; Ippolito JA
    Chemosphere; 2020 May; 247():125949. PubMed ID: 31978666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative approach for recycling phosphorous from agro-wastewaters using water treatment residuals (WTR).
    Zohar I; Ippolito JA; Massey MS; Litaor IM
    Chemosphere; 2017 Feb; 168():234-243. PubMed ID: 27788362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of water treatment residuals on phosphorus solubility and leaching.
    Elliott HA; O'Connor GA; Lu P; Brinton S
    J Environ Qual; 2002; 31(4):1362-9. PubMed ID: 12175057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus Sorption Characteristics in Aluminum-based Water Treatment Residuals Reacted with Dairy Wastewater: 1. Isotherms, XRD, and SEM-EDS Analysis.
    Zohar I; Massey MS; Ippolito JA; Litaor MI
    J Environ Qual; 2018 May; 47(3):538-545. PubMed ID: 29864177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water treatment residuals as soil amendments: Examining element extractability, soil porewater concentrations and effects on earthworm behaviour and survival.
    Howells AP; Lewis SJ; Beard DB; Oliver IW
    Ecotoxicol Environ Saf; 2018 Oct; 162():334-340. PubMed ID: 30005406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Waste to resource: use of water treatment residual for increased maize productivity and micronutrient content.
    Gwandu T; Blake LI; Nezomba H; Rurinda J; Chivasa S; Mtambanengwe F; Johnson KL
    Environ Geochem Health; 2022 Oct; 44(10):3359-3376. PubMed ID: 34570292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus Sorption to Aluminum-based Water Treatment Residuals Reacted with Dairy Wastewater: 2. X-Ray Absorption Spectroscopy.
    Massey MS; Zohar I; Ippolito JA; Litaor MI
    J Environ Qual; 2018 May; 47(3):546-553. PubMed ID: 29864179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of drinking-water treatment residual in controlling off-site phosphorus losses: a field study in Florida.
    Agyin-Birikorang S; Oladeji OO; O'Connor GA; Obreza TA; Capece JC
    J Environ Qual; 2009; 38(3):1076-85. PubMed ID: 19329695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.
    Ulén B; Etana A; Lindström B
    Water Sci Technol; 2012; 65(11):1903-11. PubMed ID: 22592458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of coagulant aluminum from water treatment residuals by acid.
    Okuda T; Nishijima W; Sugimoto M; Saka N; Nakai S; Tanabe K; Ito J; Takenaka K; Okada M
    Water Res; 2014 Sep; 60():75-81. PubMed ID: 24835954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term effects of drinking-water treatment residuals on dissolved phosphorus export from vegetated buffer strips.
    Habibiandehkordi R; Quinton JN; Surridge BW
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6068-76. PubMed ID: 25388559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for determining the phosphorus sorption capacity and amorphous aluminum of aluminum-based drinking water treatment residuals.
    Dayton EA; Basta NT
    J Environ Qual; 2005; 34(3):1112-8. PubMed ID: 15888897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leachability and leaching patterns from aluminium-based water treatment residual used as media in laboratory-scale engineered wetlands.
    Babatunde AO; Zhao YQ
    Environ Sci Pollut Res Int; 2010 Aug; 17(7):1314-22. PubMed ID: 20232166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum).
    Nishanth D; Biswas DR
    Bioresour Technol; 2008 Jun; 99(9):3342-53. PubMed ID: 17905580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate-solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L.) plant fertilized with soluble or insoluble P source.
    Rezakhani L; Motesharezadeh B; Tehrani MM; Etesami H; Mirseyed Hosseini H
    Ecotoxicol Environ Saf; 2019 May; 173():504-513. PubMed ID: 30802739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An alum-based water treatment residual can reduce extractable phosphorus concentrations in three phosphorus-enriched coastal plain soils.
    Novak JM; Watts DW
    J Environ Qual; 2005; 34(5):1820-7. PubMed ID: 16151234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fe/Mn- and P-modified drinking water treatment residuals reduced Cu and Pb phytoavailability and uptake in a mining soil.
    Wang Q; Shaheen SM; Jiang Y; Li R; Slaný M; Abdelrahman H; Kwon E; Bolan N; Rinklebe J; Zhang Z
    J Hazard Mater; 2021 Feb; 403():123628. PubMed ID: 32814241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil phosphorus dynamics following land application of unsaturated and partially saturated red mud and water treatment residuals.
    Brennan RB; Murnane JG; Sharpley AN; Herron S; Brye KR; Simmons T
    J Environ Manage; 2019 Oct; 248():109296. PubMed ID: 31376614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of drinking water treatment residuals as a potential best management practice to reduce phosphorus risk index scores.
    Dayton EA; Basta NT
    J Environ Qual; 2005; 34(6):2112-7. PubMed ID: 16275711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic bioaccessibility in a soil amended with drinking-water treatment residuals in the presence of phosphorus fertilizer.
    Sarkar D; Quazi S; Makris KC; Datta R; Khairom A
    Arch Environ Contam Toxicol; 2007 Oct; 53(3):329-36. PubMed ID: 17657461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.