These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 31978732)
1. Modeling the bioaccessibility of inhaled semivolatile organic compounds in the human respiratory tract. Wei W; Ramalho O; Mandin C Int J Hyg Environ Health; 2020 Mar; 224():113436. PubMed ID: 31978732 [TBL] [Abstract][Full Text] [Related]
2. Bioaccessibility and bioavailability of environmental semi-volatile organic compounds via inhalation: A review of methods and models. Wei W; Bonvallot N; Gustafsson Å; Raffy G; Glorennec P; Krais A; Ramalho O; Le Bot B; Mandin C Environ Int; 2018 Apr; 113():202-213. PubMed ID: 29448239 [TBL] [Abstract][Full Text] [Related]
3. Semivolatile organic compounds in French schools: Partitioning between the gas phase, airborne particles and settled dust. Wei W; Dassonville C; Sivanantham S; Gregoire A; Mercier F; Le Bot B; Malingre L; Ramalho O; Derbez M; Mandin C Indoor Air; 2021 Jan; 31(1):156-169. PubMed ID: 33439520 [TBL] [Abstract][Full Text] [Related]
4. Semivolatile organic compounds in homes: strategies for efficient and systematic exposure measurement based on empirical and theoretical factors. Dodson RE; Camann DE; Morello-Frosch R; Brody JG; Rudel RA Environ Sci Technol; 2015 Jan; 49(1):113-22. PubMed ID: 25488487 [TBL] [Abstract][Full Text] [Related]
5. Distributions of the particle/gas and dust/gas partition coefficients for seventy-two semi-volatile organic compounds in indoor environment. Wei W; Mandin C; Blanchard O; Mercier F; Pelletier M; Le Bot B; Glorennec P; Ramalho O Chemosphere; 2016 Jun; 153():212-9. PubMed ID: 27016817 [TBL] [Abstract][Full Text] [Related]
6. Semi-volatile organic compounds in infant homes: Levels, influence factors, partitioning, and implications for human exposure. Li HL; Liu LY; Zhang ZF; Ma WL; Sverko E; Zhang Z; Song WW; Sun Y; Li YF Environ Pollut; 2019 Aug; 251():609-618. PubMed ID: 31108294 [TBL] [Abstract][Full Text] [Related]
7. Modeled exposure assessment via inhalation and dermal pathways to airborne semivolatile organic compounds (SVOCs) in residences. Shi S; Zhao B Environ Sci Technol; 2014 May; 48(10):5691-9. PubMed ID: 24730560 [TBL] [Abstract][Full Text] [Related]
8. Semi-volatile organic compounds in the air and dust of 30 French schools: a pilot study. Raffy G; Mercier F; Blanchard O; Derbez M; Dassonville C; Bonvallot N; Glorennec P; Le Bot B Indoor Air; 2017 Jan; 27(1):114-127. PubMed ID: 26880519 [TBL] [Abstract][Full Text] [Related]
9. Oral bioaccessibility of semi-volatile organic compounds (SVOCs) in settled dust: A review of measurement methods, data and influencing factors. Raffy G; Mercier F; Glorennec P; Mandin C; Le Bot B J Hazard Mater; 2018 Jun; 352():215-227. PubMed ID: 29621676 [TBL] [Abstract][Full Text] [Related]
10. Sampling artifacts in active air sampling of semivolatile organic contaminants: Comparing theoretical and measured artifacts and evaluating implications for monitoring networks. Melymuk L; Bohlin-Nizzetto P; Prokeš R; Kukučka P; Klánová J Environ Pollut; 2016 Oct; 217():97-106. PubMed ID: 26743995 [TBL] [Abstract][Full Text] [Related]
11. Outdoor passive air monitoring of semi volatile organic compounds (SVOCs): a critical evaluation of performance and limitations of polyurethane foam (PUF) disks. Bohlin P; Audy O; Škrdlíková L; Kukučka P; Přibylová P; Prokeš R; Vojta Š; Klánová J Environ Sci Process Impacts; 2014 Mar; 16(3):433-44. PubMed ID: 24526226 [TBL] [Abstract][Full Text] [Related]
12. The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments. Liu C; Zhang Y; Weschler CJ Sci Total Environ; 2014 Nov; 497-498():401-411. PubMed ID: 25146909 [TBL] [Abstract][Full Text] [Related]
13. Predicting the rate constants of semivolatile organic compounds with hydroxyl radicals and ozone in indoor air. Wei W; Sivanantham S; Malingre L; Ramalho O; Mandin C Environ Pollut; 2020 Nov; 266(Pt 2):115050. PubMed ID: 32652384 [TBL] [Abstract][Full Text] [Related]
14. Exposure to SVOCs from Inhaled Particles: Impact of Desorption. Liu C; Zhang Y; Weschler CJ Environ Sci Technol; 2017 Jun; 51(11):6220-6228. PubMed ID: 28452220 [TBL] [Abstract][Full Text] [Related]
15. Calibration of silicone for passive sampling of semivolatile organic contaminants in indoor air. Sedlačková L; Melymuk L; Vrana B Chemosphere; 2021 Sep; 279():130536. PubMed ID: 33873065 [TBL] [Abstract][Full Text] [Related]
16. On-line coupling of thermal extraction with gas chromatography / tandem mass spectrometry for the analysis of semivolatile organic compounds in a few milligrams of indoor dust. Mercier F; Gilles E; Soulard P; Mandin C; Dassonville C; Le Bot B J Chromatogr A; 2020 Mar; 1615():460768. PubMed ID: 31889518 [TBL] [Abstract][Full Text] [Related]
17. Application of land use regression to identify sources and assess spatial variation in urban SVOC concentrations. Melymuk L; Robson M; Helm PA; Diamond ML Environ Sci Technol; 2013 Feb; 47(4):1887-95. PubMed ID: 23343219 [TBL] [Abstract][Full Text] [Related]
18. Polydimethylsiloxane-air partition ratios for semi-volatile organic compounds by GC-based measurement and COSMO-RS estimation: Rapid measurements and accurate modelling. Okeme JO; Parnis JM; Poole J; Diamond ML; Jantunen LM Chemosphere; 2016 Aug; 156():204-211. PubMed ID: 27179237 [TBL] [Abstract][Full Text] [Related]
19. A needle trap device method for sampling and analysis of semi-volatile organic compounds in air. Li H; Bi C; Li X; Xu Y Chemosphere; 2020 Jul; 250():126284. PubMed ID: 32234620 [TBL] [Abstract][Full Text] [Related]
20. Gas-Particle Partitioning of Semivolatile Organic Compounds in a Residence: Influence of Particles from Candles, Cooking, and Outdoors. Kristensen K; Lunderberg DM; Liu Y; Misztal PK; Tian Y; Arata C; Nazaroff WW; Goldstein AH Environ Sci Technol; 2023 Feb; 57(8):3260-3269. PubMed ID: 36796310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]