These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 31978870)

  • 1. Simulation of blood flow in arteries with aneurysm: Lattice Boltzmann Approach (LBM).
    Afrouzi HH; Ahmadian M; Hosseini M; Arasteh H; Toghraie D; Rostami S
    Comput Methods Programs Biomed; 2020 Apr; 187():105312. PubMed ID: 31978870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation of a Capsule in a Power-Law Shear Flow.
    Tian FB
    Comput Math Methods Med; 2016; 2016():7981386. PubMed ID: 27840656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries?
    Arzani A
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of stent effect and thrombosis generation with different blood rheology on an intracranial aneurysm by the Lattice Boltzmann method.
    Mezali F; Benmamar S; Naima K; Ameur H; Rafik O
    Comput Methods Programs Biomed; 2022 Jun; 219():106757. PubMed ID: 35338884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical investigation of unsteady pulsatile Newtonian/non-Newtonian blood flow through curved stenosed arteries.
    Lakzian E; Akbarzadeh P
    Biomed Mater Eng; 2020; 30(5-6):525-540. PubMed ID: 31771034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning a lattice-Boltzmann model for applications in computational hemodynamics.
    Golbert DR; Blanco PJ; Clausse A; Feijóo RA
    Med Eng Phys; 2012 Apr; 34(3):339-49. PubMed ID: 21880536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-resolved blood flow simulations of saccular aneurysms: effects of pulsatility and aspect ratio.
    Czaja B; Závodszky G; Azizi Tarksalooyeh V; Hoekstra AG
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suitability of lattice Boltzmann inlet and outlet boundary conditions for simulating flow in image-derived vasculature.
    Feiger B; Vardhan M; Gounley J; Mortensen M; Nair P; Chaudhury R; Frakes D; Randles A
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3198. PubMed ID: 30838793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of size and elasticity on the relation between flow velocity and wall shear stress in side-wall aneurysms: A lattice Boltzmann-based computer simulation study.
    Wang H; Krüger T; Varnik F
    PLoS One; 2020; 15(1):e0227770. PubMed ID: 31945111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetohydrodynamic blood flow study in stenotic coronary artery using lattice Boltzmann method.
    Cherkaoui I; Bettaibi S; Barkaoui A; Kuznik F
    Comput Methods Programs Biomed; 2022 Jun; 221():106850. PubMed ID: 35567865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axisymmetric compact finite-difference lattice Boltzmann method for blood flow simulations.
    Sakthivel M; Anupindi K
    Phys Rev E; 2019 Oct; 100(4-1):043307. PubMed ID: 31770883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.
    Evju Ø; Valen-Sendstad K; Mardal KA
    J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Reynolds and Womersley Numbers on the Hemodynamics of Intracranial Aneurysms.
    Asgharzadeh H; Borazjani I
    Comput Math Methods Med; 2016; 2016():7412926. PubMed ID: 27847544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.