These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

695 related articles for article (PubMed ID: 31978901)

  • 1. A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma.
    Lu X; Li M; Zhang H; Hua S; Meng F; Yang H; Li X; Cao D
    Phys Med Biol; 2020 Mar; 65(5):055012. PubMed ID: 31978901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application of radiomics captured from CT to predict the EGFR mutation status and TKIs therapeutic sensitivity of advanced lung adenocarcinoma].
    Yang CS; Chen WD; Gong GZ; Li ZJ; Qiu QT; Yin Y
    Zhonghua Zhong Liu Za Zhi; 2019 Apr; 41(4):282-287. PubMed ID: 31014053
    [No Abstract]   [Full Text] [Related]  

  • 3. Computed Tomography-Based Radiomics Signature: A Potential Indicator of Epidermal Growth Factor Receptor Mutation in Pulmonary Adenocarcinoma Appearing as a Subsolid Nodule.
    Yang X; Dong X; Wang J; Li W; Gu Z; Gao D; Zhong N; Guan Y
    Oncologist; 2019 Nov; 24(11):e1156-e1164. PubMed ID: 30936378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CT texture analysis of lung adenocarcinoma: can Radiomic features be surrogate biomarkers for EGFR mutation statuses.
    Mei D; Luo Y; Wang Y; Gong J
    Cancer Imaging; 2018 Dec; 18(1):52. PubMed ID: 30547844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction model based on 18F-FDG PET/CT radiomic features and clinical factors of EGFR mutations in lung adenocarcinoma.
    Zhao HY; Su YX; Zhang LH; Fu P
    Neoplasma; 2022 Jan; 69(1):233-241. PubMed ID: 34779641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A clinically practical radiomics-clinical combined model based on PET/CT data and nomogram predicts EGFR mutation in lung adenocarcinoma.
    Chang C; Zhou S; Yu H; Zhao W; Ge Y; Duan S; Wang R; Qian X; Lei B; Wang L; Liu L; Ruan M; Yan H; Sun X; Xie W
    Eur Radiol; 2021 Aug; 31(8):6259-6268. PubMed ID: 33544167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CT imaging-based histogram features for prediction of EGFR mutation status of bone metastases in patients with primary lung adenocarcinoma.
    Shen TX; Liu L; Li WH; Fu P; Xu K; Jiang YQ; Pan F; Guo Y; Zhang MC
    Cancer Imaging; 2019 Jun; 19(1):34. PubMed ID: 31174617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomic Features Are Associated With EGFR Mutation Status in Lung Adenocarcinomas.
    Liu Y; Kim J; Balagurunathan Y; Li Q; Garcia AL; Stringfield O; Ye Z; Gillies RJ
    Clin Lung Cancer; 2016 Sep; 17(5):441-448.e6. PubMed ID: 27017476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of pathological nodal involvement by CT-based Radiomic features of the primary tumor in patients with clinically node-negative peripheral lung adenocarcinomas.
    Liu Y; Kim J; Balagurunathan Y; Hawkins S; Stringfield O; Schabath MB; Li Q; Qu F; Liu S; Garcia AL; Ye Z; Gillies RJ
    Med Phys; 2018 Jun; 45(6):2518-2526. PubMed ID: 29624702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application value of CT radiomic nomogram in predicting T790M mutation of lung adenocarcinoma.
    Li X; Chen J; Zhang C; Han Z; Zheng X; Cao D
    BMC Pulm Med; 2023 Sep; 23(1):339. PubMed ID: 37697337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study to evaluate CT-based semantic and radiomic features in preoperative diagnosis of invasive pulmonary adenocarcinomas manifesting as subsolid nodules.
    Wu YJ; Liu YC; Liao CY; Tang EK; Wu FZ
    Sci Rep; 2021 Jan; 11(1):66. PubMed ID: 33462251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Value of pre-therapy
    Zhang J; Zhao X; Zhao Y; Zhang J; Zhang Z; Wang J; Wang Y; Dai M; Han J
    Eur J Nucl Med Mol Imaging; 2020 May; 47(5):1137-1146. PubMed ID: 31728587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate prediction of epidermal growth factor receptor mutation status in early-stage lung adenocarcinoma, using radiomics and clinical features.
    Zhu H; Song Y; Huang Z; Zhang L; Chen Y; Tao G; She Y; Sun X; Yu H
    Asia Pac J Clin Oncol; 2022 Dec; 18(6):586-594. PubMed ID: 35098682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative nomogram of intratumoral, peritumoral, and lymph node radiomic features for prediction of lymph node metastasis in cT1N0M0 lung adenocarcinomas.
    Das SK; Fang KW; Xu L; Li B; Zhang X; Yang HF
    Sci Rep; 2021 May; 11(1):10829. PubMed ID: 34031529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Biomarkers for Prediction of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer.
    Zhang L; Chen B; Liu X; Song J; Fang M; Hu C; Dong D; Li W; Tian J
    Transl Oncol; 2018 Feb; 11(1):94-101. PubMed ID: 29216508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction.
    Sun Y; Li C; Jin L; Gao P; Zhao W; Ma W; Tan M; Wu W; Duan S; Shan Y; Li M
    Eur Radiol; 2020 Jul; 30(7):3650-3659. PubMed ID: 32162003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between epidermal growth factor receptor mutations and CT features in patients with lung adenocarcinoma.
    Zhang G; Zhao Z; Cao Y; Zhang J; Li S; Deng L; Zhou J
    Clin Radiol; 2021 Jun; 76(6):473.e17-473.e24. PubMed ID: 33731263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling.
    Jia TY; Xiong JF; Li XY; Yu W; Xu ZY; Cai XW; Ma JC; Ren YC; Larsson R; Zhang J; Zhao J; Fu XL
    Eur Radiol; 2019 Sep; 29(9):4742-4750. PubMed ID: 30778717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development and validation of a radiomic nomogram for the preoperative prediction of lung adenocarcinoma.
    Liu Q; Huang Y; Chen H; Liu Y; Liang R; Zeng Q
    BMC Cancer; 2020 Jun; 20(1):533. PubMed ID: 32513144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combination of radiomic features, clinic characteristics, and serum tumor biomarkers to predict the possibility of the micropapillary/solid component of lung adenocarcinoma.
    Xing X; Li L; Sun M; Zhu X; Feng Y
    Ther Adv Respir Dis; 2024; 18():17534666241249168. PubMed ID: 38757628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.