These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31978911)

  • 1. Ab initio molecular dynamics and high-dimensional neural network potential study of VZrNbHfTa melt.
    Balyakin IA; Yuryev AA; Gelchinski BR; Rempel AA
    J Phys Condens Matter; 2020 May; 32(21):214006. PubMed ID: 31978911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni
    Zhang Y; Ashcraft R; Mendelev MI; Wang CZ; Kelton KF
    J Chem Phys; 2016 Nov; 145(20):204505. PubMed ID: 27908127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ
    J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melt crystallization mechanism analyzed with dimensional reduction of high-dimensional data representing distribution function geometries.
    Nada H
    Sci Rep; 2020 Sep; 10(1):15465. PubMed ID: 32963268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of interatomic potential for Al-Tb alloys using a deep neural network learning method.
    Tang L; Yang ZJ; Wen TQ; Ho KM; Kramer MJ; Wang CZ
    Phys Chem Chem Phys; 2020 Sep; 22(33):18467-18479. PubMed ID: 32778859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.
    Liu J; Zhu T; Wang X; He X; Zhang JZ
    J Chem Theory Comput; 2015 Dec; 11(12):5897-905. PubMed ID: 26642993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous solutions: state of the art in ab initio molecular dynamics.
    Hassanali AA; Cuny J; Verdolino V; Parrinello M
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2011):20120482. PubMed ID: 24516179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio and force field molecular dynamics study of bulk organophosphorus and organochlorine liquid structures.
    Priest CW; Greathouse JA; Kinnan MK; Burton PD; Rempe SB
    J Chem Phys; 2021 Feb; 154(8):084503. PubMed ID: 33639727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short- and medium-range structure of multicomponent bioactive glasses and melts: An assessment of the performances of shell-model and rigid-ion potentials.
    Tilocca A
    J Chem Phys; 2008 Aug; 129(8):084504. PubMed ID: 19044832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atom-centered symmetry functions for constructing high-dimensional neural network potentials.
    Behler J
    J Chem Phys; 2011 Feb; 134(7):074106. PubMed ID: 21341827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composition- and temperature-dependent liquid structures in Al-Cu alloys: an ab initio molecular dynamics and x-ray diffraction study.
    Xiong LH; Wang XD; Cao QP; Zhang DX; Xie HL; Xiao TQ; Jiang JZ
    J Phys Condens Matter; 2017 Jan; 29(3):035101. PubMed ID: 27849627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel Multistream Training of High-Dimensional Neural Network Potentials.
    Singraber A; Morawietz T; Behler J; Dellago C
    J Chem Theory Comput; 2019 May; 15(5):3075-3092. PubMed ID: 30995035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Dimensional Atomistic Neural Network Potentials for Molecule-Surface Interactions: HCl Scattering from Au(111).
    Kolb B; Luo X; Zhou X; Jiang B; Guo H
    J Phys Chem Lett; 2017 Feb; 8(3):666-672. PubMed ID: 28102689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive molecular dynamics models from
    Arntsen C; Chen C; Voth GA
    Chem Phys Lett; 2017 Sep; 683():573-578. PubMed ID: 28845049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep machine learning interatomic potential for liquid silica.
    Balyakin IA; Rempel SV; Ryltsev RE; Rempel AA
    Phys Rev E; 2020 Nov; 102(5-1):052125. PubMed ID: 33327164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the structural evolution of ternary phosphate glasses from melts to solid amorphous materials.
    Di Tommaso D; Ainsworth RI; Tang E; de Leeuw NH
    J Mater Chem B; 2013 Oct; 1(38):5054-5066. PubMed ID: 32261096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio molecular dynamics with discrete variable representation basis sets: techniques and application to liquid water.
    Lee HS; Tuckerman ME
    J Phys Chem A; 2006 Apr; 110(16):5549-60. PubMed ID: 16623489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the structure and dynamics of a room-temperature ionic liquid: ab initio molecular dynamics simulation studies of 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and the [bmim][PF6]-CO2 mixture.
    Bhargava BL; Balasubramanian S
    J Phys Chem B; 2007 May; 111(17):4477-87. PubMed ID: 17417900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.
    Shen L; Wu J; Yang W
    J Chem Theory Comput; 2016 Oct; 12(10):4934-4946. PubMed ID: 27552235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.