BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31978971)

  • 1. On the Limits of Scanning Thermal Microscopy of Ultrathin Films.
    Metzke C; Frammelsberger W; Weber J; Kühnel F; Zhu K; Lanza M; Benstetter AG
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31978971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning Thermal Microscopy of Ultrathin Films: Numerical Studies Regarding Cantilever Displacement, Thermal Contact Areas, Heat Fluxes, and Heat Distribution.
    Metzke C; Kühnel F; Weber J; Benstetter G
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal mapping of a scanning thermal microscopy tip.
    Jóźwiak G; Wielgoszewski G; Gotszalk T; Kępiński L
    Ultramicroscopy; 2013 Oct; 133():80-7. PubMed ID: 23933596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental setup for thermal measurements at the nanoscale using a SThM probe with niobium nitride thermometer.
    Swami R; Julié G; Le-Denmat S; Pernot G; Singhal D; Paterson J; Maire J; Motte JF; Paillet N; Guillou H; Gomès S; Bourgeois O
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38814363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pico-Watt Scanning Thermal Microscopy for Thermal Energy Transport Investigation in Atomic Materials.
    Koo S; Park J; Kim K
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.
    Hwang G; Chung J; Kwon O
    Rev Sci Instrum; 2014 Nov; 85(11):114901. PubMed ID: 25430136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale thermal AFM of polymers: transient heat flow effects.
    Duvigneau J; Schönherr H; Vancso GJ
    ACS Nano; 2010 Nov; 4(11):6932-40. PubMed ID: 20979371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal characterization of morphologically diverse copper phthalocyanine thin layers by scanning thermal microscopy.
    Trefon-Radziejewska D; Juszczyk J; Krzywiecki M; Hamaoui G; Horny N; Antoniow JS; Chirtoc M
    Ultramicroscopy; 2022 Mar; 233():113435. PubMed ID: 34864284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM).
    Pereira MJ; Amaral JS; Silva NJ; Amaral VS
    Microsc Microanal; 2016 Dec; 22(6):1270-1280. PubMed ID: 27869043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes.
    Tovee PD; Pumarol ME; Rosamond MC; Jones R; Petty MC; Zeze DA; Kolosov OV
    Phys Chem Chem Phys; 2014 Jan; 16(3):1174-81. PubMed ID: 24292551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimension- and shape-dependent thermal transport in nano-patterned thin films investigated by scanning thermal microscopy.
    Ge Y; Zhang Y; Weaver JMR; Dobson PS
    Nanotechnology; 2017 Dec; 28(48):485706. PubMed ID: 29035274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large Reduction of Hot Spot Temperature in Graphene Electronic Devices with Heat-Spreading Hexagonal Boron Nitride.
    Choi D; Poudel N; Park S; Akinwande D; Cronin SB; Watanabe K; Taniguchi T; Yao Z; Shi L
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11101-11107. PubMed ID: 29528211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale temperature sensing of electronic devices with calibrated scanning thermal microscopy.
    Swoboda T; Wainstein N; Deshmukh S; Köroğlu Ç; Gao X; Lanza M; Hilgenkamp H; Pop E; Yalon E; Muñoz Rojo M
    Nanoscale; 2023 Apr; 15(15):7139-7146. PubMed ID: 37006192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. APCVD hexagonal boron nitride thin films for passive near-junction thermal management of electronics.
    Kc P; Rai A; Ashton TS; Moore AL
    Nanotechnology; 2017 Dec; 28(50):505705. PubMed ID: 29095146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conductivity measurements of thin films by non-contact scanning thermal microscopy under ambient conditions.
    Zhang Y; Zhu W; Borca-Tasciuc T
    Nanoscale Adv; 2021 Feb; 3(3):692-702. PubMed ID: 36133831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of optical near field in nanophotonics devices at the nanoscale using Scanning Thermal Microscopy.
    Grajower M; Desiatov B; Goykhman I; Stern L; Mazurski N; Levy U
    Opt Express; 2015 Oct; 23(21):27763-75. PubMed ID: 26480438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic Layer Deposition of Layered Boron Nitride for Large-Area 2D Electronics.
    Lee J; Ravichandran AV; Mohan J; Cheng L; Lucero AT; Zhu H; Che Z; Catalano M; Kim MJ; Wallace RM; Venugopal A; Choi W; Colombo L; Kim J
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36688-36694. PubMed ID: 32667778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dark mode in scanning thermal microscopy.
    Ramiandrisoa L; Allard A; Joumani Y; Hay B; Gomés S
    Rev Sci Instrum; 2017 Dec; 88(12):125115. PubMed ID: 29289173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of scanning thermal microscope probe with ultra-thin oxide tip and demonstration of its enhanced performance.
    Chae H; Hwang G; Kwon O
    Ultramicroscopy; 2016 Dec; 171():195-203. PubMed ID: 27694037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.