These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31979217)

  • 1. Role of Impurity Sulphur in the Ductility Trough of Austenitic Iron-Nickel Alloys.
    Christien F
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31979217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallographic Evaluation of Increased Susceptibility to Intermediate Embrittlement of Engine Valve Forgings Made of NCF 3015 High Nickel and Chromium Steel.
    Lachowicz MM; Zwierzchowski M; Hawryluk M; Gronostajski Z; Janik M
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of high-temperature strain instrumentation for in situ SEM evaluation of ductility dip cracking.
    Torres EA; Montoro F; Righetto RD; Ramirez AJ
    J Microsc; 2014 Jun; 254(3):157-65. PubMed ID: 24749869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of serrated grain boundary on tensile and creep properties of a precipitation strengthened high entropy alloy.
    Lee JL; Wang PT; Lo KC; Shen PK; Tsou NT; Kakehi K; Murakami H; Tsai CW; Gorsse S; Yeh AC
    Sci Technol Adv Mater; 2023; 24(1):2158043. PubMed ID: 36684848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grain Size Effect on the Hot Ductility of High-Nitrogen Austenitic Stainless Steel in the Presence of Precipitates.
    Wang Z; Wang Y; Wang C
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grain boundary decohesion by nanoclustering Ni and Cr separately in CrMnFeCoNi high-entropy alloys.
    Ming K; Li L; Li Z; Bi X; Wang J
    Sci Adv; 2019 Dec; 5(12):eaay0639. PubMed ID: 31840073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy.
    Qian D; Xue J; Zhang A; Li Y; Tamura N; Song Z; Chen K
    Sci Rep; 2017 Jun; 7(1):2859. PubMed ID: 28588298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of surfaces and interfaces in controlling the mechanical properties of metallic alloys.
    Lee WJ; Chia WJ; Wang J; Chen Y; Vaynman S; Fine ME; Chung YW
    Langmuir; 2010 Nov; 26(21):16254-60. PubMed ID: 20527827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic Investigation for Experimental Study on Transverse Cracking of Ti-Nb Containing Micro-Alloyed Steels.
    Turan S; Shafy H; Palkowski H
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Strain Rate on Hydrogen Embrittlement of Ti6Al4V Alloy.
    Nguyen TD; Ansari N; Lee KH; Lee DH; Han JH; Lee SY
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model.
    Li H; Li J; Tang B; Fan J; Yuan H
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29084171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Impact Load on the Atomistic Scale Fracture Behavior of Nanocrystalline bcc Iron.
    Zhao Z; Wang Z; Bie Y; Liu X; Wei Y
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Boron on Hot Ductility and Room-Temperature Tensile Properties of Microalloyed Steels with Titanium and Niobium.
    Li Q; Liu W
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31319574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An SEM compatible plasma cell for in situ studies of hydrogen-material interaction.
    Massone A; Manhard A; Jacob W; Drexler A; Ecker W; Hohenwarter A; Wurster S; Kiener D
    Rev Sci Instrum; 2020 Apr; 91(4):043705. PubMed ID: 32357725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Susceptibility of High-Manganese Steel to High-Temperature Cracking.
    Fojt-Dymara G; Opiela M; Borek W
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of deformation twinning on the mechanical properties of biodegradable Zn-Mg alloys.
    Liu S; Kent D; Doan N; Dargusch M; Wang G
    Bioact Mater; 2019 Mar; 4(1):8-16. PubMed ID: 30533552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling selective intergranular oxidation of binary alloys.
    Xu Z; Li D; Schreiber DK; Rosso KM; Bruemmer SM
    J Chem Phys; 2015 Jan; 142(1):014704. PubMed ID: 25573575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embrittlement Due to Excess Heat Input into Friction Stir Processed 7075 Alloy.
    Ku MH; Hung FY; Lui TS
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30634709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The significance of deformation mechanisms on the fracture behavior of phase reversion-induced nanostructured austenitic stainless steel.
    Misra RDK; Injeti VSY; Somani MC
    Sci Rep; 2018 May; 8(1):7908. PubMed ID: 29784921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New nanoscale toughening mechanisms mitigate embrittlement in binary nanocrystalline alloys.
    Heckman NM; Foiles SM; O'Brien CJ; Chandross M; Barr CM; Argibay N; Hattar K; Lu P; Adams DP; Boyce BL
    Nanoscale; 2018 Dec; 10(45):21231-21243. PubMed ID: 30417913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.