These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31979334)

  • 1. Jet Mode Recognition of Electrohydrodynamic Direct-Writing Based on Micro/Nano Current.
    Kang G; Zheng G; Chen Y; Jiang J; Chen H; Wang X; Li W; Huang Y; Zheng J
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31979334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement and Time Response of Electrohydrodynamic Direct-Writing Current.
    Zheng G; Xue W; Chen H; Sun L; Jiang J; Wang X; Guo S; Li W
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30691100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrohydrodynamic Direct-Writing Micropatterns with Assisted Airflow.
    Jiang J; Wang X; Li W; Liu J; Liu Y; Zheng G
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation and Validation of Droplet Generation Process for Revealing Three Design Constraints in Electrohydrodynamic Jet Printing.
    Pan Y; Zeng L
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30699909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-scale additive direct-writing fabrication of micro/nano lens arrays by electrohydrodynamic jet printing.
    Zhou P; Yu H; Zou W; Zhong Y; Wang X; Wang Z; Liu L
    Opt Express; 2020 Mar; 28(5):6336-6349. PubMed ID: 32225884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrohydrodynamic printing process monitoring by microscopic image identification.
    Sun J; Jing L; Fan X; Gao X; Liang YC
    Int J Bioprint; 2019; 5(1):164. PubMed ID: 32923733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing.
    Lee A; Jin H; Dang HW; Choi KH; Ahn KH
    Langmuir; 2013 Nov; 29(44):13630-9. PubMed ID: 24102618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-field simulations of electrohydrodynamic jetting for printing nano-to-microscopic constructs.
    Singh SK; Subramanian A
    RSC Adv; 2020 Jun; 10(42):25022-25028. PubMed ID: 35517438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Patterned Electrohydrodynamic Jet Printing Using Orthogonal Deflection Electrodes.
    Li X; Liang J; Xiao J; Zhu L; Wang H; Sun L; Zhang F; Zhang Y; Yin P; Chen L; Wang D
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):46300-46310. PubMed ID: 37733925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtip focused electrohydrodynamic jet printing with nanoscale resolution.
    Su S; Liang J; Wang Z; Xin W; Li X; Wang D
    Nanoscale; 2020 Dec; 12(48):24450-24462. PubMed ID: 33300927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instrument for fine control of drop-on-demand electrohydrodynamic jet printing by current measurement.
    Li K; Wang D; Yi S; Jia H; Qian J; Du Z; Ren T; Liang J; Martinez-Chapa SO; Madou M
    Rev Sci Instrum; 2019 Nov; 90(11):115001. PubMed ID: 31779448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of Cone-Jet and Micro-Drip Regimes and Printing of Micro-Scale Patterns on PET Substrate.
    Wang D; Abbas Z; Lu L; Liang S; Zhao X; Xu P; Zhao K; Suo L; Cui Y; Yin P; Tang B; Xie J; Yang Y; Liang J
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Both E-Jet Printing Ejection Cycle Time and Droplet Diameter Based on Random Forest Regression.
    Chen Y; Lao Z; Wang R; Li J; Gai J; You H
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Stability of Electrohydrodynamic Jet Printing Using Poly(ethylene oxide) Solvent-Based Inks.
    Ramon A; Liashenko I; Rosell-Llompart J; Cabot A
    Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Study of the Influence of Ink Properties and Process Parameters on Ejection Volume in Electrohydrodynamic Jet Printing.
    Guo L; Duan Y; Huang Y; Yin Z
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jet break-up in nano-suspensions during electrohydrodynamic atomization in the stable cone-jet mode.
    Jayasinghe SN; Edirisinghe MJ
    J Nanosci Nanotechnol; 2005 Jun; 5(6):923-6. PubMed ID: 16060154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing.
    Lee H; Seong B; Kim J; Jang Y; Byun D
    Small; 2014 Oct; 10(19):3918-22. PubMed ID: 24925213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile and scalable fabrication of Ni cantilever nanoprobes using silicon template and micro-electroforming techniques for nano-tip focused electrohydrodynamic jet printing.
    Hu Y; Su S; Liang J; Xin W; Li X; Wang D
    Nanotechnology; 2021 Mar; 32(10):105301. PubMed ID: 33227721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical modeling and analysis of coaxial electrohydrodynamic jet printing.
    Wang D; Abbas Z; Lu L; Zhao X; Xu P; Zhao K; Yin P; Liang J
    Sci Rep; 2022 Feb; 12(1):1924. PubMed ID: 35121778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Study of Drop-on-Demand Coaxial Electrohydrodynamic Jet and Printing Microdroplets.
    Abbas Z; Wang D; Lu L; Li Y; Pu C; Chen X; Xu P; Liang S; Kong L; Tang B
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.