BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31980088)

  • 1. Using multi-layer perceptron with Laplacian edge detector for bladder cancer diagnosis.
    Lorencin I; Anđelić N; Španjol J; Car Z
    Artif Intell Med; 2020 Jan; 102():101746. PubMed ID: 31980088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Support System of Cystoscopic Diagnosis for Bladder Cancer Based on Artificial Intelligence.
    Ikeda A; Nosato H; Kochi Y; Kojima T; Kawai K; Sakanashi H; Murakawa M; Nishiyama H
    J Endourol; 2020 Mar; 34(3):352-358. PubMed ID: 31808367
    [No Abstract]   [Full Text] [Related]  

  • 3. A deep learning network-assisted bladder tumour recognition under cystoscopy based on Caffe deep learning framework and EasyDL platform.
    Du Y; Yang R; Chen Z; Wang L; Weng X; Liu X
    Int J Med Robot; 2021 Feb; 17(1):1-8. PubMed ID: 32947648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic T1 bladder tumor detection by using wavelet analysis in cystoscopy images.
    Freitas NR; Vieira PM; Lima E; Lima CS
    Phys Med Biol; 2018 Feb; 63(3):035031. PubMed ID: 29271350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cystoscopic Imaging for Bladder Cancer Detection Based on Stepwise Organic Transfer Learning with a Pretrained Convolutional Neural Network.
    Ikeda A; Nosato H; Kochi Y; Negoro H; Kojima T; Sakanashi H; Murakawa M; Nishiyama H
    J Endourol; 2021 Jul; 35(7):1030-1035. PubMed ID: 33148020
    [No Abstract]   [Full Text] [Related]  

  • 6. U-Net based deep learning bladder segmentation in CT urography.
    Ma X; Hadjiiski LM; Wei J; Chan HP; Cha KH; Cohan RH; Caoili EM; Samala R; Zhou C; Lu Y
    Med Phys; 2019 Apr; 46(4):1752-1765. PubMed ID: 30734932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. U-Net-Based Assistive Identification of Bladder Cancer: A Promising Approach for Improved Diagnosis.
    Guo Y; Li C; Zhang S; Zhu G; Sun L; Jin T; Wang Z; Li S; Zhou F
    Urol Int; 2024; 108(2):100-107. PubMed ID: 38081150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning-based classification of blue light cystoscopy imaging during transurethral resection of bladder tumors.
    Ali N; Bolenz C; Todenhöfer T; Stenzel A; Deetmar P; Kriegmair M; Knoll T; Porubsky S; Hartmann A; Popp J; Kriegmair MC; Bocklitz T
    Sci Rep; 2021 Jun; 11(1):11629. PubMed ID: 34079004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of artificial intelligence for the diagnosis of bladder cancer: a review and perspectives.
    Chan EO; Pradere B; Teoh JY;
    Curr Opin Urol; 2021 Jul; 31(4):397-403. PubMed ID: 33978604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmented Bladder Tumor Detection Using Deep Learning.
    Shkolyar E; Jia X; Chang TC; Trivedi D; Mach KE; Meng MQ; Xing L; Liao JC
    Eur Urol; 2019 Dec; 76(6):714-718. PubMed ID: 31537407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Calibrated Multiexit Neural Network for Detecting Urothelial Cancer Cells.
    Lilli L; Giarnieri E; Scardapane S
    Comput Math Methods Med; 2021; 2021():5569458. PubMed ID: 34234839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor detection under cystoscopy with transformer-augmented deep learning algorithm.
    Jia X; Shkolyar E; Laurie MA; Eminaga O; Liao JC; Xing L
    Phys Med Biol; 2023 Aug; 68(16):. PubMed ID: 37548023
    [No Abstract]   [Full Text] [Related]  

  • 13. Automatic recognition of bladder tumours using deep learning technology and its clinical application.
    Yang R; Du Y; Weng X; Chen Z; Wang S; Liu X
    Int J Med Robot; 2021 Apr; 17(2):e2194. PubMed ID: 33119212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Automated
    Lucas M; Liem EIML; Savci-Heijink CD; Freund JE; Marquering HA; van Leeuwen TG; de Bruin DM
    J Endourol; 2019 Nov; 33(11):930-937. PubMed ID: 31657629
    [No Abstract]   [Full Text] [Related]  

  • 15. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network.
    Han SS; Park GH; Lim W; Kim MS; Na JI; Park I; Chang SE
    PLoS One; 2018; 13(1):e0191493. PubMed ID: 29352285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enhanced deep learning approach for brain cancer MRI images classification using residual networks.
    Abdelaziz Ismael SA; Mohammed A; Hefny H
    Artif Intell Med; 2020 Jan; 102():101779. PubMed ID: 31980109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital Mapping of the Urinary Bladder: Potential for Standardized Cystoscopy Reports.
    Kriegmair MC; Bergen T; Ritter M; Mandel P; Michel MS; Wittenberg T; Bolenz C
    Urology; 2017 Jun; 104():235-241. PubMed ID: 28214573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment.
    Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW
    Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computed Tomography Image Features under Deep Learning Algorithm Applied in Staging Diagnosis of Bladder Cancer and Detection on Ceramide Glycosylation.
    Xu Y; Lou J; Gao Z; Zhan M
    Comput Math Methods Med; 2022; 2022():7979523. PubMed ID: 35035524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explainable artificial intelligence (XAI): closing the gap between image analysis and navigation in complex invasive diagnostic procedures.
    O'Sullivan S; Janssen M; Holzinger A; Nevejans N; Eminaga O; Meyer CP; Miernik A
    World J Urol; 2022 May; 40(5):1125-1134. PubMed ID: 35084542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.