These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 31980096)

  • 1. Ophthalmic diagnosis using deep learning with fundus images - A critical review.
    Sengupta S; Singh A; Leopold HA; Gulati T; Lakshminarayanan V
    Artif Intell Med; 2020 Jan; 102():101758. PubMed ID: 31980096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning in ophthalmology: a review.
    Grewal PS; Oloumi F; Rubin U; Tennant MTS
    Can J Ophthalmol; 2018 Aug; 53(4):309-313. PubMed ID: 30119782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology.
    Balyen L; Peto T
    Asia Pac J Ophthalmol (Phila); 2019; 8(3):264-272. PubMed ID: 31149787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey.
    Asiri N; Hussain M; Al Adel F; Alzaidi N
    Artif Intell Med; 2019 Aug; 99():101701. PubMed ID: 31606116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-Preserving Guided Retinal Image Filtering and Its Application for Optic Disk Analysis.
    Cheng J; Li Z; Gu Z; Fu H; Wong DWK; Liu J
    IEEE Trans Med Imaging; 2018 Nov; 37(11):2536-2546. PubMed ID: 29994522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning.
    Mitra A; Banerjee PS; Roy S; Roy S; Setua SK
    Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Techniques for Ophthalmic Data Processing: A Review.
    Sarhan MH; Nasseri MA; Zapp D; Maier M; Lohmann CP; Navab N; Eslami A
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3338-3350. PubMed ID: 32750971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Content-Adaptive Global Registration for Multimodal Retinal Images Using Weakly Supervised Deep-Learning Framework.
    Wang Y; Zhang J; Cavichini M; Bartsch DG; Freeman WR; Nguyen TQ; An C
    IEEE Trans Image Process; 2021; 30():3167-3178. PubMed ID: 33600314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration.
    Burlina PM; Joshi N; Pacheco KD; Liu TYA; Bressler NM
    JAMA Ophthalmol; 2019 Mar; 137(3):258-264. PubMed ID: 30629091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning in ophthalmology: The technical and clinical considerations.
    Ting DSW; Peng L; Varadarajan AV; Keane PA; Burlina PM; Chiang MF; Schmetterer L; Pasquale LR; Bressler NM; Webster DR; Abramoff M; Wong TY
    Prog Retin Eye Res; 2019 Sep; 72():100759. PubMed ID: 31048019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-aided diagnosis of glaucoma using fundus images: A review.
    Hagiwara Y; Koh JEW; Tan JH; Bhandary SV; Laude A; Ciaccio EJ; Tong L; Acharya UR
    Comput Methods Programs Biomed; 2018 Oct; 165():1-12. PubMed ID: 30337064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamentals of artificial intelligence for ophthalmologists.
    Ahmad BU; Kim JE; Rahimy E
    Curr Opin Ophthalmol; 2020 Sep; 31(5):303-311. PubMed ID: 32740061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection.
    Jiang Y; Xia H; Xu Y; Cheng J; Fu H; Duan L; Meng Z; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():862-865. PubMed ID: 30440527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading.
    Sahlsten J; Jaskari J; Kivinen J; Turunen L; Jaanio E; Hietala K; Kaski K
    Sci Rep; 2019 Jul; 9(1):10750. PubMed ID: 31341220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patch-Based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation.
    Wang S; Yu L; Yang X; Fu CW; Heng PA
    IEEE Trans Med Imaging; 2019 Nov; 38(11):2485-2495. PubMed ID: 30794170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning model for the detection of both advanced and early glaucoma using fundus photography.
    Ahn JM; Kim S; Ahn KS; Cho SH; Lee KB; Kim US
    PLoS One; 2018; 13(11):e0207982. PubMed ID: 30481205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial intelligence and deep learning in ophthalmology.
    Ting DSW; Pasquale LR; Peng L; Campbell JP; Lee AY; Raman R; Tan GSW; Schmetterer L; Keane PA; Wong TY
    Br J Ophthalmol; 2019 Feb; 103(2):167-175. PubMed ID: 30361278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.
    Li Z; He Y; Keel S; Meng W; Chang RT; He M
    Ophthalmology; 2018 Aug; 125(8):1199-1206. PubMed ID: 29506863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques.
    Akyol K; Şen B; Bayır Ş
    Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.