These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31980102)

  • 1. DESIGN AND DEVELOPMENT OF HUMAN COMPUTER INTERFACE USING ELECTROOCULOGRAM WITH DEEP LEARNING.
    Teng G; He Y; Zhao H; Liu D; Xiao J; Ramkumar S
    Artif Intell Med; 2020 Jan; 102():101765. PubMed ID: 31980102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal identification system for developing rehabilitative device using deep learning algorithms.
    Tang W; Wang A; Ramkumar S; Nair RKR
    Artif Intell Med; 2020 Jan; 102():101755. PubMed ID: 31980094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an electrooculogram-based eye-computer interface for communication of individuals with amyotrophic lateral sclerosis.
    Chang WD; Cha HS; Kim DY; Kim SH; Im CH
    J Neuroeng Rehabil; 2017 Sep; 14(1):89. PubMed ID: 28886720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eye Movement Signal Classification for Developing Human-Computer Interface Using Electrooculogram.
    Thilagaraj M; Dwarakanath B; Ramkumar S; Karthikeyan K; Prabhu A; Saravanakumar G; Rajasekaran MP; Arunkumar N
    J Healthc Eng; 2021; 2021():7901310. PubMed ID: 34925741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EOG-based eye movement recognition using GWO-NN optimization.
    Mulam H; Mudigonda M
    Biomed Tech (Berl); 2020 Jan; 65(1):11-22. PubMed ID: 31393829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.
    Heo J; Yoon H; Park KS
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface.
    Hosni SM; Shedeed HA; Mabrouk MS; Tolba MF
    Neuroinformatics; 2019 Jul; 17(3):323-341. PubMed ID: 30368637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EOG-sEMG Human Interface for Communication.
    Tamura H; Yan M; Sakurai K; Tanno K
    Comput Intell Neurosci; 2016; 2016():7354082. PubMed ID: 27418924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.
    Wu SL; Liao LD; Lu SW; Jiang WL; Chen SA; Lin CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2133-41. PubMed ID: 23446030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach for detection of dyslexia using convolutional neural network with EOG signals.
    Ileri R; Latifoğlu F; Demirci E
    Med Biol Eng Comput; 2022 Nov; 60(11):3041-3055. PubMed ID: 36063351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrooculograms for Human-Computer Interaction: A Review.
    Chang WD
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31207949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical mean curve decomposition with multiwavelet transformation for eye movements recognition using electrooculogram signals.
    Mulam H; Mudigonda M
    Proc Inst Mech Eng H; 2020 Aug; 234(8):794-811. PubMed ID: 32615863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removing the Interdependency between Horizontal and Vertical Eye-Movement Components in Electrooculograms.
    Chang WD; Cha HS; Im CH
    Sensors (Basel); 2016 Feb; 16(2):227. PubMed ID: 26907271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Open Software/Hardware Platform for Human-Computer Interface Based on Electrooculography (EOG) Signal Classification.
    Martínez-Cerveró J; Ardali MK; Jaramillo-Gonzalez A; Wu S; Tonin A; Birbaumer N; Chaudhary U
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32344820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Single-Channel EOG-Based Speller.
    He S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):1978-1987. PubMed ID: 28641264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature selection in classification of eye movements using electrooculography for activity recognition.
    Mala S; Latha K
    Comput Math Methods Med; 2014; 2014():713818. PubMed ID: 25574185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using eye movement to control a computer: a design for a lightweight electro-oculogram electrode array and computer interface.
    Iáñez E; Azorin JM; Perez-Vidal C
    PLoS One; 2013; 8(7):e67099. PubMed ID: 23843986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrooculogram based system for computer control using a multiple feature classification model.
    Kherlopian AR; Gerrein JP; Yue M; Kim KE; Kim JW; Sukumaran M; Sajda P
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1295-8. PubMed ID: 17946887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an electrooculogram-based human-computer interface using involuntary eye movement by spatially rotating sound for communication of locked-in patients.
    Kim DY; Han CH; Im CH
    Sci Rep; 2018 Jun; 8(1):9505. PubMed ID: 29934518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time "Eye-Writing" Recognition Using Electrooculogram.
    Kwang-Ryeol Lee ; Won-Du Chang ; Sungkean Kim ; Chang-Hwan Im
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):37-48. PubMed ID: 28113859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.