BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31980237)

  • 1. Application of spectral induced polarization for characterizing surfactant-enhanced DNAPL remediation in laboratory column experiments.
    Deng Y; Shi X; Zhang Z; Sun Y; Wu J; Qian J
    J Contam Hydrol; 2020 Mar; 230():103603. PubMed ID: 31980237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of DNAPL source zones in clay-sand media via joint inversion of DC resistivity, induced polarization and borehole data.
    Kang X; Power C; Kokkinaki A; Revil A; Wu J; Shi X; Deng Y
    J Contam Hydrol; 2023 Sep; 258():104240. PubMed ID: 37683375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore network and Darcy scale modelling of DNAPL remediation using ethanol flushing: Study of physical properties in DNAPL remediation.
    Aminnaji M; Yakşi K; Copty NK; Niasar VJ; Babaei M
    J Contam Hydrol; 2021 Dec; 243():103886. PubMed ID: 34507216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-objective optimization framework for surfactant-enhanced remediation of DNAPL contaminations.
    Schaerlaekens J; Mertens J; Van Linden J; Vermeiren G; Carmeliet J; Feyen J
    J Contam Hydrol; 2006 Aug; 86(3-4):176-94. PubMed ID: 16600420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: A two-dimensional flow cell study.
    Wu B; Li H; Du X; Zhong L; Yang B; Du P; Gu Q; Li F
    Chemosphere; 2016 Feb; 144():2142-9. PubMed ID: 26583297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating hydraulic tomography, electrical resistivity tomography, and partitioning interwell tracer test datasets to improve identification of pool-dominated DNAPL source zone architecture.
    Guo Q; Shi X; Kang X; Chang Y; Wang P; Wu J
    J Contam Hydrol; 2021 Aug; 241():103809. PubMed ID: 33866142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant-enhanced in-situ oxidation of DNAPL source zone: Experiments and numerical modeling.
    Demiray Z; Akyol NH; Akyol G; Copty NK
    J Contam Hydrol; 2023 Sep; 258():104233. PubMed ID: 37625208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory investigation of flux reduction from dense non-aqueous phase liquid (DNAPL) partial source zone remediation by enhanced dissolution.
    Kaye AJ; Cho J; Basu NB; Chen X; Annable MD; Jawitz JW
    J Contam Hydrol; 2008 Nov; 102(1-2):17-28. PubMed ID: 18420303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation.
    Power C; Gerhard JI; Karaoulis M; Tsourlos P; Giannopoulos A
    J Contam Hydrol; 2014 Jul; 162-163():27-46. PubMed ID: 24854903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant flooding makes a comeback: Results of a full-scale, field implementation to recover mobilized NAPL.
    Sharma P; Kostarelos K; Lenschow S; Christensen A; de Blanc PC
    J Contam Hydrol; 2020 Mar; 230():103602. PubMed ID: 32005455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bench-scale visualization of DNAPL remediation processes in analog heterogeneous aquifers: surfactant floods and in situ oxidation using permanganate.
    Conrad SH; Glass RJ; Peplinski WJ
    J Contam Hydrol; 2002 Sep; 58(1-2):13-49. PubMed ID: 12236553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental upscaling analyses for a surfactant-enhanced in-situ chemical oxidation (S-ISCO) remediation design.
    Herzog BM; Kleinknecht SM; Haslauer CP; Klaas N
    J Contam Hydrol; 2023 Sep; 258():104230. PubMed ID: 37481897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore-scale investigation of surfactant-enhanced DNAPL mobilization and solubilization.
    Wang Z; Yang Z; Chen YF
    Chemosphere; 2023 Nov; 341():140071. PubMed ID: 37673186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced-solubilization and dissolution of multicomponent DNAPL from homogeneous porous media.
    Tick G; Slavic DR; Akyol NH; Zhang Y
    J Contam Hydrol; 2022 May; 247():103967. PubMed ID: 35247695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamically-enhanced transfer of dense non-aqueous phase liquids into an aqueous reservoir.
    Valletti N; Budroni MA; Albanese P; Marchettini N; Sanchez-Dominguez M; Lagzi I; Rossi F
    Water Res; 2023 Mar; 231():119608. PubMed ID: 36709564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral induced polarization signatures of smoldering remediation enhanced with colloidal activated carbon: An experimental study.
    Almpanis A; Slater L; Gerhard JI; Power C
    J Contam Hydrol; 2023 Nov; 259():104266. PubMed ID: 37952285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones.
    Heiderscheidt JL; Siegrist RL; Illangasekare TH
    J Contam Hydrol; 2008 Nov; 102(1-2):3-16. PubMed ID: 18774622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer.
    Maji R; Sudicky EA
    J Contam Hydrol; 2008 Nov; 102(1-2):105-19. PubMed ID: 18929427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pore-scale investigation of heavy crude oil trapping and removal during surfactant-enhanced remediation.
    Ghosh J; Tick GR; Akyol NH; Zhang Y
    J Contam Hydrol; 2019 Jun; 223():103471. PubMed ID: 31014903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.