BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31980587)

  • 1. Visuoauditory Associative Memory Established with Cholecystokinin Under Anesthesia Is Retrieved in Behavioral Contexts.
    Zhang Z; Zheng X; Sun W; Peng Y; Guo Y; Lu D; Zheng Y; Li X; Jendrichovsky P; Tang P; He L; Li M; Liu Q; Xu F; Ng G; Chen X; He J
    J Neurosci; 2020 Mar; 40(10):2025-2037. PubMed ID: 31980587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoding and retrieval of artificial visuoauditory memory traces in the auditory cortex requires the entorhinal cortex.
    Chen X; Guo Y; Feng J; Liao Z; Li X; Wang H; Li X; He J
    J Neurosci; 2013 Jun; 33(24):9963-74. PubMed ID: 23761892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterosynaptic plasticity of the visuo-auditory projection requires cholecystokinin released from entorhinal cortex afferents.
    Sun W; Wu H; Peng Y; Zheng X; Li J; Zeng D; Tang P; Zhao M; Feng H; Li H; Liang Y; Su J; Chen X; Hökfelt T; He J
    Elife; 2024 Mar; 13():. PubMed ID: 38436304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The entorhinal cortex modulates trace fear memory formation and neuroplasticity in the mouse lateral amygdala via cholecystokinin.
    Feng H; Su J; Fang W; Chen X; He J
    Elife; 2021 Nov; 10():. PubMed ID: 34779397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex.
    Li X; Yu K; Zhang Z; Sun W; Yang Z; Feng J; Chen X; Liu CH; Wang H; Guo YP; He J
    Cell Res; 2014 Mar; 24(3):307-30. PubMed ID: 24343575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholecystokinin release triggered by NMDA receptors produces LTP and sound-sound associative memory.
    Chen X; Li X; Wong YT; Zheng X; Wang H; Peng Y; Feng H; Feng J; Baibado JT; Jesky R; Wang Z; Xie H; Sun W; Zhang Z; Zhang X; He L; Zhang N; Zhang Z; Tang P; Su J; Hu LL; Liu Q; He X; Tan A; Sun X; Li M; Wong K; Wang X; Cheung HY; Shum DK; Yung KKL; Chan YS; Tortorella M; Guo Y; Xu F; He J
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6397-6406. PubMed ID: 30850520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relational associative learning induces cross-modal plasticity in early visual cortex.
    Headley DB; Weinberger NM
    Cereb Cortex; 2015 May; 25(5):1306-18. PubMed ID: 24275832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid induction of specific associative behavioral memory by stimulation of the nucleus basalis in the rat.
    Miasnikov AA; Chen JC; Weinberger NM
    Neurobiol Learn Mem; 2006 Jul; 86(1):47-65. PubMed ID: 16466937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time course of the dependence of associative memory retrieval on the entorhinal cortex.
    Chen X; Liao Z; Wong YT; Guo Y; He J
    Neurobiol Learn Mem; 2014 Dec; 116():155-61. PubMed ID: 25452085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nucleus basalis and memory codes: auditory cortical plasticity and the induction of specific, associative behavioral memory.
    Weinberger NM
    Neurobiol Learn Mem; 2003 Nov; 80(3):268-84. PubMed ID: 14521869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala.
    Quirk GJ; Armony JL; LeDoux JE
    Neuron; 1997 Sep; 19(3):613-24. PubMed ID: 9331352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between paired-pulse facilitation and long-term potentiation in the projection from hippocampal area CA1 to the entorhinal cortex.
    Craig S; Commins S
    Neurosci Res; 2005 Oct; 53(2):140-6. PubMed ID: 16039740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of amygdala lesions on early and late plastic components of auditory cortex spike trains during fear conditioning.
    Armony JL; Quirk GJ; LeDoux JE
    J Neurosci; 1998 Apr; 18(7):2592-601. PubMed ID: 9502818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological memory in primary auditory cortex: characteristics and mechanisms.
    Weinberger NM
    Neurobiol Learn Mem; 1998; 70(1-2):226-51. PubMed ID: 9753599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motivationally neutral stimulation of the nucleus basalis induces specific behavioral memory.
    Miasnikov AA; Chen JC; Gross N; Poytress BS; Weinberger NM
    Neurobiol Learn Mem; 2008 Jul; 90(1):125-37. PubMed ID: 18343695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term retention of learning-induced receptive-field plasticity in the auditory cortex.
    Weinberger NM; Javid R; Lepan B
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2394-8. PubMed ID: 8460150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gamma-band activation predicts both associative memory and cortical plasticity.
    Headley DB; Weinberger NM
    J Neurosci; 2011 Sep; 31(36):12748-58. PubMed ID: 21900554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gamma band plasticity in sensory cortex is a signature of the strongest memory rather than memory of the training stimulus.
    Weinberger NM; Miasnikov AA; Bieszczad KM; Chen JC
    Neurobiol Learn Mem; 2013 Sep; 104():49-63. PubMed ID: 23669065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory modality specificity of neural activity related to memory in visual cortex.
    Gibson JR; Maunsell JH
    J Neurophysiol; 1997 Sep; 78(3):1263-75. PubMed ID: 9310418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory spatial discriminatory and mnemonic neurons in rat posterior parietal cortex.
    Nakamura K
    J Neurophysiol; 1999 Nov; 82(5):2503-17. PubMed ID: 10561422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.