BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 31980607)

  • 1. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity.
    Pillon NJ; Gabriel BM; Dollet L; Smith JAB; Sardón Puig L; Botella J; Bishop DJ; Krook A; Zierath JR
    Nat Commun; 2020 Jan; 11(1):470. PubMed ID: 31980607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic Signatures and Upstream Regulation in Human Skeletal Muscle Adapted to Disuse and Aerobic Exercise.
    Makhnovskii PA; Bokov RO; Kolpakov FA; Popov DV
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33530535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time trajectories in the transcriptomic response to exercise - a meta-analysis.
    Amar D; Lindholm ME; Norrbom J; Wheeler MT; Rivas MA; Ashley EA
    Nat Commun; 2021 Jun; 12(1):3471. PubMed ID: 34108459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Nuclear Receptor, Nor-1, Induces the Physiological Responses Associated With Exercise.
    Goode JM; Pearen MA; Tuong ZK; Wang SC; Oh TG; Shao EX; Muscat GE
    Mol Endocrinol; 2016 Jun; 30(6):660-76. PubMed ID: 27144290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease.
    Smith AG; Muscat GE
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2047-63. PubMed ID: 15922648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic exercise augments muscle transcriptome profile of resistance exercise.
    Lundberg TR; Fernandez-Gonzalo R; Tesch PA; Rullman E; Gustafsson T
    Am J Physiol Regul Integr Comp Physiol; 2016 Jun; 310(11):R1279-87. PubMed ID: 27101291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal Muscle Transcriptomic Comparison between Long-Term Trained and Untrained Men and Women.
    Chapman MA; Arif M; Emanuelsson EB; Reitzner SM; Lindholm ME; Mardinoglu A; Sundberg CJ
    Cell Rep; 2020 Jun; 31(12):107808. PubMed ID: 32579934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle transcriptional networks linked to resistance exercise training hypertrophic response heterogeneity.
    Lavin KM; Bell MB; McAdam JS; Peck BD; Walton RG; Windham ST; Tuggle SC; Long DE; Kern PA; Peterson CA; Bamman MM
    Physiol Genomics; 2021 May; 53(5):206-221. PubMed ID: 33870722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NR4A3 and CCL20 clusters dominate the genetic networks in CD146
    Wang YH; Li CX; Stephenson JM; Marrelli SP; Kou YM; Meng DZ; Wu T
    Eur J Med Res; 2021 Sep; 26(1):113. PubMed ID: 34565470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise.
    Mahoney DJ; Parise G; Melov S; Safdar A; Tarnopolsky MA
    FASEB J; 2005 Sep; 19(11):1498-500. PubMed ID: 15985525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise, diet, and skeletal muscle gene expression.
    Hargreaves M; Cameron-Smith D
    Med Sci Sports Exerc; 2002 Sep; 34(9):1505-8. PubMed ID: 12218746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular networks of human muscle adaptation to exercise and age.
    Phillips BE; Williams JP; Gustafsson T; Bouchard C; Rankinen T; Knudsen S; Smith K; Timmons JA; Atherton PJ
    PLoS Genet; 2013 Mar; 9(3):e1003389. PubMed ID: 23555298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Transcriptome and Methylome Analysis in Human Skeletal Muscle Anabolism, Hypertrophy and Epigenetic Memory.
    Turner DC; Seaborne RA; Sharples AP
    Sci Rep; 2019 Mar; 9(1):4251. PubMed ID: 30862794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic transcriptomic responses to divergent acute exercise stimuli in young adults.
    Lavin KM; Graham ZA; McAdam JS; O'Bryan SM; Drummer D; Bell MB; Kelley CJ; Lixandrão ME; Peoples B; Tuggle SC; Seay RS; Van Keuren-Jensen K; Huentelman MJ; Pirrotte P; Reiman R; Alsop E; Hutchins E; Antone J; Bonfitto A; Meechoovet B; Palade J; Talboom JS; Sullivan A; Aban I; Peri K; Broderick TJ; Bamman MM
    Physiol Genomics; 2023 Apr; 55(4):194-212. PubMed ID: 36939205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of local muscle contractile activity in the exercise-induced increase in NR4A receptor mRNA expression.
    Kawasaki E; Hokari F; Sasaki M; Sakai A; Koshinaka K; Kawanaka K
    J Appl Physiol (1985); 2009 Jun; 106(6):1826-31. PubMed ID: 19359610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical Exercise and Epigenetic Modifications in Skeletal Muscle.
    Widmann M; Nieß AM; Munz B
    Sports Med; 2019 Apr; 49(4):509-523. PubMed ID: 30778851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three months of bed rest induce a residual transcriptomic signature resilient to resistance exercise countermeasures.
    Fernandez-Gonzalo R; Tesch PA; Lundberg TR; Alkner BA; Rullman E; Gustafsson T
    FASEB J; 2020 Jun; 34(6):7958-7969. PubMed ID: 32293758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic Analysis of Human Skeletal Muscle in Response to Aerobic Exercise and Protein Intake.
    Zeng X; Li L; Xia Z; Zou L; Kwok T; Su Y
    Nutrients; 2023 Aug; 15(15):. PubMed ID: 37571423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise-induced skeletal muscle signaling pathways and human athletic performance.
    Camera DM; Smiles WJ; Hawley JA
    Free Radic Biol Med; 2016 Sep; 98():131-143. PubMed ID: 26876650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal muscle adaptation to exercise: a century of progress.
    Hamilton MT; Booth FW
    J Appl Physiol (1985); 2000 Jan; 88(1):327-31. PubMed ID: 10642397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.