These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 31980695)
1. Validation of MRI quantitative susceptibility mapping of superparamagnetic iron oxide nanoparticles for hyperthermia applications in live subjects. Deh K; Zaman M; Vedvyas Y; Liu Z; Gillen KM; O' Malley P; Bedretdinova D; Nguyen T; Lee R; Spincemaille P; Kim J; Wang Y; Jin MM Sci Rep; 2020 Jan; 10(1):1171. PubMed ID: 31980695 [TBL] [Abstract][Full Text] [Related]
2. Susceptibility weighted imaging and quantitative susceptibility mapping of the cerebral vasculature using ferumoxytol. Liu S; Brisset JC; Hu J; Haacke EM; Ge Y J Magn Reson Imaging; 2018 Mar; 47(3):621-633. PubMed ID: 28731570 [TBL] [Abstract][Full Text] [Related]
3. A New Pharmacokinetic Model Describing the Biodistribution of Intravenously and Intratumorally Administered Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in a GL261 Xenograft Glioblastoma Model. Klapproth AP; Shevtsov M; Stangl S; Li WB; Multhoff G Int J Nanomedicine; 2020; 15():4677-4689. PubMed ID: 32669844 [TBL] [Abstract][Full Text] [Related]
4. Ferumoxytol nanoparticle uptake in brain during acute neuroinflammation is cell-specific. McConnell HL; Schwartz DL; Richardson BE; Woltjer RL; Muldoon LL; Neuwelt EA Nanomedicine; 2016 Aug; 12(6):1535-42. PubMed ID: 27071335 [TBL] [Abstract][Full Text] [Related]
5. Current limitations of molecular magnetic resonance imaging for tumors as evaluated with high-relaxivity CD105-specific iron oxide nanoparticles. Dassler K; Roohi F; Lohrke J; Ide A; Remmele S; Hütter J; Pietsch H; Pison U; Schütz G Invest Radiol; 2012 Jul; 47(7):383-91. PubMed ID: 22659596 [TBL] [Abstract][Full Text] [Related]
6. Imaging Tumor Necrosis with Ferumoxytol. Aghighi M; Golovko D; Ansari C; Marina NM; Pisani L; Kurlander L; Klenk C; Bhaumik S; Wendland M; Daldrup-Link HE PLoS One; 2015; 10(11):e0142665. PubMed ID: 26569397 [TBL] [Abstract][Full Text] [Related]
7. Longitudinal MRI contrast enhanced monitoring of early tumour development with manganese chloride (MnCl2) and superparamagnetic iron oxide nanoparticles (SPIOs) in a CT1258 based in vivo model of prostate cancer. Sterenczak KA; Meier M; Glage S; Meyer M; Willenbrock S; Wefstaedt P; Dorsch M; Bullerdiek J; Murua Escobar H; Hedrich H; Nolte I BMC Cancer; 2012 Jul; 12():284. PubMed ID: 22784304 [TBL] [Abstract][Full Text] [Related]
8. Triple Therapy of HER2 Zolata H; Afarideh H; Davani FA Cancer Biother Radiopharm; 2016 Nov; 31(9):324-329. PubMed ID: 27831759 [TBL] [Abstract][Full Text] [Related]
9. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Kossatz S; Grandke J; Couleaud P; Latorre A; Aires A; Crosbie-Staunton K; Ludwig R; Dähring H; Ettelt V; Lazaro-Carrillo A; Calero M; Sader M; Courty J; Volkov Y; Prina-Mello A; Villanueva A; Somoza Á; Cortajarena AL; Miranda R; Hilger I Breast Cancer Res; 2015 May; 17(1):66. PubMed ID: 25968050 [TBL] [Abstract][Full Text] [Related]
10. Measurements of cerebral blood volume using quantitative susceptibility mapping, R Rivera-Rivera LA; Schubert T; Johnson KM NMR Biomed; 2019 Dec; 32(12):e4175. PubMed ID: 31482602 [TBL] [Abstract][Full Text] [Related]
12. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model. Rego GNA; Mamani JB; Souza TKF; Nucci MP; Silva HRD; Gamarra LF Einstein (Sao Paulo); 2019 Aug; 17(4):eAO4786. PubMed ID: 31390427 [TBL] [Abstract][Full Text] [Related]
13. Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Ma HL; Xu YF; Qi XR; Maitani Y; Nagai T Int J Pharm; 2008 Apr; 354(1-2):217-26. PubMed ID: 18191350 [TBL] [Abstract][Full Text] [Related]
14. Ultrasmall Superparamagnetic Iron Oxide Imaging Identifies Tissue and Nerve Inflammation in Pain Conditions. Shen S; Ding W; Ahmed S; Hu R; Opalacz A; Roth S; You Z; Wotjkiewicz GR; Lim G; Chen L; Mao J; Chen JW; Zhang Y Pain Med; 2018 Apr; 19(4):686-692. PubMed ID: 29177411 [TBL] [Abstract][Full Text] [Related]
15. Imaging behavior of the normal adrenal on ferumoxytol-enhanced MRI: preliminary findings. Gunn AJ; Seethamraju RT; Hedgire S; Elmi A; Daniels GH; Harisinghani MG AJR Am J Roentgenol; 2013 Jul; 201(1):117-21. PubMed ID: 23789664 [TBL] [Abstract][Full Text] [Related]
16. Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Elias A; Tsourkas A Hematology Am Soc Hematol Educ Program; 2009; ():720-6. PubMed ID: 20008258 [TBL] [Abstract][Full Text] [Related]
17. Optimization and Design of Magnetic Ferrite Nanoparticles with Uniform Tumor Distribution for Highly Sensitive MRI/MPI Performance and Improved Magnetic Hyperthermia Therapy. Du Y; Liu X; Liang Q; Liang XJ; Tian J Nano Lett; 2019 Jun; 19(6):3618-3626. PubMed ID: 31074627 [TBL] [Abstract][Full Text] [Related]
18. R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing. Kuhlpeter R; Dahnke H; Matuszewski L; Persigehl T; von Wallbrunn A; Allkemper T; Heindel WL; Schaeffter T; Bremer C Radiology; 2007 Nov; 245(2):449-57. PubMed ID: 17848680 [TBL] [Abstract][Full Text] [Related]
19. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications. Chandrasekharan P; Tay ZW; Hensley D; Zhou XY; Fung BK; Colson C; Lu Y; Fellows BD; Huynh Q; Saayujya C; Yu E; Orendorff R; Zheng B; Goodwill P; Rinaldi C; Conolly S Theranostics; 2020; 10(7):2965-2981. PubMed ID: 32194849 [TBL] [Abstract][Full Text] [Related]