BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 31980751)

  • 1. Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2.
    Kaul A; Bhattacharyya S; Ay F
    Nat Protoc; 2020 Mar; 15(3):991-1012. PubMed ID: 31980751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test.
    Lagler TM; Abnousi A; Hu M; Yang Y; Li Y
    Am J Hum Genet; 2021 Feb; 108(2):257-268. PubMed ID: 33545029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing long-range interactions by extracting free energies from genome-wide chromosome conformation capture data.
    Saberi S; Farré P; Cuvier O; Emberly E
    BMC Bioinformatics; 2015 May; 16():171. PubMed ID: 26001583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data.
    Carty M; Zamparo L; Sahin M; González A; Pelossof R; Elemento O; Leslie CS
    Nat Commun; 2017 May; 8():15454. PubMed ID: 28513628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data.
    Li W; Gong K; Li Q; Alber F; Zhou XJ
    Bioinformatics; 2015 Mar; 31(6):960-2. PubMed ID: 25391400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing high-resolution chromosome three-dimensional structures by Hi-C complex networks.
    Liu T; Wang Z
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):496. PubMed ID: 30591009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships.
    Lohia R; Fox N; Gillis J
    Genome Biol; 2022 Nov; 23(1):238. PubMed ID: 36352464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture.
    Yaffe E; Tanay A
    Nat Genet; 2011 Oct; 43(11):1059-65. PubMed ID: 22001755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts.
    Ay F; Bailey TL; Noble WS
    Genome Res; 2014 Jun; 24(6):999-1011. PubMed ID: 24501021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation.
    Belaghzal H; Dekker J; Gibcus JH
    Methods; 2017 Jul; 123():56-65. PubMed ID: 28435001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. hicGAN infers super resolution Hi-C data with generative adversarial networks.
    Liu Q; Lv H; Jiang R
    Bioinformatics; 2019 Jul; 35(14):i99-i107. PubMed ID: 31510693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of 3D genome architecture via a two-stage algorithm.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2015 Nov; 16():373. PubMed ID: 26553003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HiCHap: a package to correct and analyze the diploid Hi-C data.
    Luo H; Li X; Fu H; Peng C
    BMC Genomics; 2020 Oct; 21(1):746. PubMed ID: 33109075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HiCNN: a very deep convolutional neural network to better enhance the resolution of Hi-C data.
    Liu T; Wang Z
    Bioinformatics; 2019 Nov; 35(21):4222-4228. PubMed ID: 31056636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boost-HiC: computational enhancement of long-range contacts in chromosomal contact maps.
    Carron L; Morlot JB; Matthys V; Lesne A; Mozziconacci J
    Bioinformatics; 2019 Aug; 35(16):2724-2729. PubMed ID: 30615061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments.
    Alinejad-Rokny H; Ghavami Modegh R; Rabiee HR; Ramezani Sarbandi E; Rezaie N; Tam KT; Forrest ARR
    PLoS Comput Biol; 2022 Jun; 18(6):e1010241. PubMed ID: 35749574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust and efficient single-cell Hi-C clustering with approximate k-nearest neighbor graphs.
    Wolff J; Backofen R; Grüning B
    Bioinformatics; 2021 Nov; 37(22):4006-4013. PubMed ID: 34021764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BART3D: inferring transcriptional regulators associated with differential chromatin interactions from Hi-C data.
    Wang Z; Zhang Y; Zang C
    Bioinformatics; 2021 Sep; 37(18):3075-3078. PubMed ID: 33720325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.