BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31980997)

  • 1. Effects of Electrode Diameter and Contact Material on Signal Morphology of Gastric Bioelectrical Slow Wave Recordings.
    Kamat AA; Paskaranandavadivel N; Alighaleh S; Cheng LK; Angeli TR
    Ann Biomed Eng; 2020 Apr; 48(4):1407-1418. PubMed ID: 31980997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.
    Angeli TR; Du P; Paskaranandavadivel N; Sathar S; Hall A; Asirvatham SJ; Farrugia G; Windsor JA; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2017 May; 29(5):. PubMed ID: 28035728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of gold versus silver electrode contacts for high-resolution gastric electrical mapping using flexible printed circuit board arrays.
    O'Grady G; Paskaranandavadivel N; Angeli TR; Du P; Windsor JA; Cheng LK; Pullan AJ
    Physiol Meas; 2011 Mar; 32(3):N13-22. PubMed ID: 21252419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns.
    Berry R; Paskaranandavadivel N; Du P; Trew ML; O'Grady G; Windsor JA; Cheng LK
    Surg Endosc; 2017 Jan; 31(1):477-486. PubMed ID: 27129554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation.
    Du P; O'Grady G; Egbuji JU; Lammers WJ; Budgett D; Nielsen P; Windsor JA; Pullan AJ; Cheng LK
    Ann Biomed Eng; 2009 Apr; 37(4):839-46. PubMed ID: 19224368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement and Analysis of In Vivo Gastroduodenal Slow Wave Patterns Using Anatomically-Specific Cradles and Electrodes.
    Simmonds S; Cheng LK; Ruha WW; Taberner AJ; Du P; Angeli-Gordon TR
    IEEE Trans Biomed Eng; 2024 Apr; 71(4):1289-1297. PubMed ID: 37971910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of gold and PEDOT:PSS contacts for high-resolution gastric electrical mapping using flexible printed circuit arrays.
    Zhang P; Travas-Sejdic J; O'Grady G; Du P
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6937-6940. PubMed ID: 34892699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of noninvasive body-surface gastric mapping for detecting gastric slow-wave spatiotemporal features by simultaneous serosal mapping in porcine.
    Calder S; Cheng LK; Andrews CN; Paskaranandavadivel N; Waite S; Alighaleh S; Erickson JC; Gharibans A; O'Grady G; Du P
    Am J Physiol Gastrointest Liver Physiol; 2022 Oct; 323(4):G295-G305. PubMed ID: 35916432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution in vivo monophasic gastric slow waves to quantify activation and recovery profiles.
    Han H; Cheng LK; Paskaranandavadivel N
    Neurogastroenterol Motil; 2022 Dec; 34(12):e14422. PubMed ID: 35726361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo experimental validation of detection of gastric slow waves using a flexible multichannel electrogastrography sensor linear array.
    Sukasem A; Calder S; Angeli-Gordon TR; Andrews CN; O'Grady G; Gharibans A; Du P
    Biomed Eng Online; 2022 Jun; 21(1):43. PubMed ID: 35761323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-channel wireless mapping of gastrointestinal serosal slow wave propagation.
    Paskaranandavadivel N; Wang R; Sathar S; O'Grady G; Cheng LK; Farajidavar A
    Neurogastroenterol Motil; 2015 Apr; 27(4):580-5. PubMed ID: 25599978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping.
    Egbuji JU; O'Grady G; Du P; Cheng LK; Lammers WJ; Windsor JA; Pullan AJ
    Neurogastroenterol Motil; 2010 Oct; 22(10):e292-300. PubMed ID: 20618830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution optical mapping of gastric slow wave propagation.
    Zhang H; Yu H; Walcott GP; Paskaranandavadivel N; Cheng LK; O'Grady G; Rogers JM
    Neurogastroenterol Motil; 2019 Jan; 31(1):e13449. PubMed ID: 30129082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of the Recovery Phase of in vivo gastric slow wave recordings.
    Paskaranandavadivel N; Pan X; Du P; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6094-7. PubMed ID: 26737682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Deep Convolutional Neural Network Approach to Classify Normal and Abnormal Gastric Slow Wave Initiation From the High Resolution Electrogastrogram.
    Agrusa AS; Gharibans AA; Allegra AA; Kunkel DC; Coleman TP
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):854-867. PubMed ID: 31199249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel laparoscopic device for measuring gastrointestinal slow-wave activity.
    O'Grady G; Du P; Egbuji JU; Lammers WJ; Wahab A; Pullan AJ; Cheng LK; Windsor JA
    Surg Endosc; 2009 Dec; 23(12):2842-8. PubMed ID: 19466491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Spatially-dense Microfabricated Photolithographic Electrode Array for Gastrointestinal Slow Wave Recordings
    Nagahawatte ND; Paskaranandavadivel N; Angeli TR; Cheng LK; Avci R
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3957-3960. PubMed ID: 33018866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Validation of a Surface-Contact Electrode for Gastric Pacing and Concurrent Slow-Wave Mapping.
    Alighaleh S; Cheng L; Angeli-Gordon TR; Aghababaie Z; O'Grady G; Paskaranandavadivel N
    IEEE Trans Biomed Eng; 2021 Aug; 68(8):2574-2581. PubMed ID: 33656985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translation of an existing implantable cardiac monitoring device for measurement of gastric electrical slow-wave activity.
    Dowrick JM; Jungbauer Nikolas L; Offutt SJ; Tremain P; Erickson JC; Angeli-Gordon TR
    Neurogastroenterol Motil; 2024 Feb; 36(2):e14723. PubMed ID: 38062544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications.
    Paskaranandavadivel N; Cheng LK; Du P; Rogers JM; O'Grady G
    Am J Physiol Gastrointest Liver Physiol; 2017 Sep; 313(3):G265-G276. PubMed ID: 28546283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.