BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 31981059)

  • 1. Aerobic Glycolysis in the Brain: Warburg and Crabtree Contra Pasteur.
    Barros LF; Ruminot I; San Martín A; Lerchundi R; Fernández-Moncada I; Baeza-Lehnert F
    Neurochem Res; 2021 Jan; 46(1):15-22. PubMed ID: 31981059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal control of astrocytic respiration through a variant of the Crabtree effect.
    Fernández-Moncada I; Ruminot I; Robles-Maldonado D; Alegría K; Deitmer JW; Barros LF
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):1623-1628. PubMed ID: 29378955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Recruitment in Brain Tissue.
    Barros LF; Ruminot I; Sotelo-Hitschfeld T; Lerchundi R; Fernández-Moncada I
    Annu Rev Physiol; 2023 Feb; 85():115-135. PubMed ID: 36270291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging.
    Magistretti PJ; Pellerin L
    Philos Trans R Soc Lond B Biol Sci; 1999 Jul; 354(1387):1155-63. PubMed ID: 10466143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain.
    Dienel GA
    J Neurosci Res; 2017 Nov; 95(11):2103-2125. PubMed ID: 28151548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Astrocytic aerobic glycolysis provides lactate to support neuronal oxidative metabolism in the hippocampus.
    Dias C; Fernandes E; Barbosa RM; Laranjinha J; Ledo A
    Biofactors; 2023; 49(4):875-886. PubMed ID: 37070143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal Stimulation Triggers Neuronal Glycolysis and Not Lactate Uptake.
    Díaz-García CM; Mongeon R; Lahmann C; Koveal D; Zucker H; Yellen G
    Cell Metab; 2017 Aug; 26(2):361-374.e4. PubMed ID: 28768175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NH4(+) triggers the release of astrocytic lactate via mitochondrial pyruvate shunting.
    Lerchundi R; Fernández-Moncada I; Contreras-Baeza Y; Sotelo-Hitschfeld T; Mächler P; Wyss MT; Stobart J; Baeza-Lehnert F; Alegría K; Weber B; Barros LF
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):11090-5. PubMed ID: 26286989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid Brain Glycolysis: Limits, Speed, Location, Moonlighting, and the Fates of Glycogen and Lactate.
    Barros LF; San Martín A; Ruminot I; Sandoval PY; Baeza-Lehnert F; Arce-Molina R; Rauseo D; Contreras-Baeza Y; Galaz A; Valdivia S
    Neurochem Res; 2020 Jun; 45(6):1328-1334. PubMed ID: 32144525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurons rely on glucose rather than astrocytic lactate during stimulation.
    Díaz-García CM; Yellen G
    J Neurosci Res; 2019 Aug; 97(8):883-889. PubMed ID: 30575090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Response to Stimulation in Neurons and Astrocytes.
    Juaristi I; Contreras L; González-Sánchez P; Pérez-Liébana I; González-Moreno L; Pardo B; Del Arco A; Satrústegui J
    Neurochem Res; 2019 Oct; 44(10):2385-2391. PubMed ID: 31016552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.
    Dienel GA; Cruz NF
    J Neurochem; 2016 Jul; 138(1):14-52. PubMed ID: 27166428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose and lactate metabolism during brain activation.
    Dienel GA; Hertz L
    J Neurosci Res; 2001 Dec; 66(5):824-38. PubMed ID: 11746408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain activity-induced neuronal glucose uptake/glycolysis: Is the lactate shuttle not required?
    Tang BL
    Brain Res Bull; 2018 Mar; 137():225-228. PubMed ID: 29273209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiration-Deficient Astrocytes Survive As Glycolytic Cells
    Supplie LM; Düking T; Campbell G; Diaz F; Moraes CT; Götz M; Hamprecht B; Boretius S; Mahad D; Nave KA
    J Neurosci; 2017 Apr; 37(16):4231-4242. PubMed ID: 28314814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis.
    Hertz L; Peng L; Dienel GA
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):219-49. PubMed ID: 16835632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of glutamate in neuron-glia metabolic coupling.
    Magistretti PJ
    Am J Clin Nutr; 2009 Sep; 90(3):875S-880S. PubMed ID: 19571222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices.
    Ivanov AI; Malkov AE; Waseem T; Mukhtarov M; Buldakova S; Gubkina O; Zilberter M; Zilberter Y
    J Cereb Blood Flow Metab; 2014 Mar; 34(3):397-407. PubMed ID: 24326389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production.
    Schuster S; Boley D; Möller P; Stark H; Kaleta C
    Biochem Soc Trans; 2015 Dec; 43(6):1187-94. PubMed ID: 26614659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism.
    Yellen G
    J Cell Biol; 2018 Jul; 217(7):2235-2246. PubMed ID: 29752396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.