These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 31981846)
1. Rapid, tunable synthesis of porous carbon xerogels with expanded graphite and their application as anodes for Li-ion batteries. Chen L; Deng J; Hong S; Lian H J Colloid Interface Sci; 2020 Apr; 565():368-377. PubMed ID: 31981846 [TBL] [Abstract][Full Text] [Related]
2. A Tunable Molten-Salt Route for Scalable Synthesis of Ultrathin Amorphous Carbon Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries. Wang Y; Tian W; Wang L; Zhang H; Liu J; Peng T; Pan L; Wang X; Wu M ACS Appl Mater Interfaces; 2018 Feb; 10(6):5577-5585. PubMed ID: 29346719 [TBL] [Abstract][Full Text] [Related]
3. Porous carbon anodes for a high capacity lithium-ion battery obtained by incorporating silica into benzoxazine during polymerization. Guo DC; Han F; Lu AH Chemistry; 2015 Jan; 21(4):1520-5. PubMed ID: 25428788 [TBL] [Abstract][Full Text] [Related]
5. Graphitized Carbon Xerogels for Lithium-Ion Batteries. Canal-Rodríguez M; Arenillas A; Villanueva SF; Montes-Morán MA; Menénedez JA Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31887992 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of porous CoMoO Wang L; Cui X; Gong L; Lyu Z; Zhou Y; Dong W; Liu J; Lai M; Huo F; Huang W; Lin M; Chen W Nanoscale; 2017 Mar; 9(11):3898-3904. PubMed ID: 28261709 [TBL] [Abstract][Full Text] [Related]
7. Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. Lu H; Chen R; Hu Y; Wang X; Wang Y; Ma L; Zhu G; Chen T; Tie Z; Jin Z; Liu J Nanoscale; 2017 Feb; 9(5):1972-1977. PubMed ID: 28102408 [TBL] [Abstract][Full Text] [Related]
8. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. Hou J; Cao C; Idrees F; Ma X ACS Nano; 2015 Mar; 9(3):2556-64. PubMed ID: 25703427 [TBL] [Abstract][Full Text] [Related]
9. Nickel-Embedded Carbon Materials Derived from Wheat Flour for Li-Ion Storage. Ding W; Wu X; Li Y; Wang S; Zhuo S Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081207 [TBL] [Abstract][Full Text] [Related]
10. Tunable Synthesis of Yolk-Shell Porous Silicon@Carbon for Optimizing Si/C-Based Anode of Lithium-Ion Batteries. Guo S; Hu X; Hou Y; Wen Z ACS Appl Mater Interfaces; 2017 Dec; 9(48):42084-42092. PubMed ID: 29120163 [TBL] [Abstract][Full Text] [Related]
11. A New Anode for Lithium-Ion Batteries Based on Single-Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design. Ren J; Ren RP; Lv YK Chem Asian J; 2018 May; 13(9):1223-1227. PubMed ID: 29524325 [TBL] [Abstract][Full Text] [Related]
12. Preparation of a Si/SiO Zeng L; Liu R; Han L; Luo F; Chen X; Wang J; Qian Q; Chen Q; Wei M Chemistry; 2018 Apr; 24(19):4841-4848. PubMed ID: 29194824 [TBL] [Abstract][Full Text] [Related]
13. Ion-Catalyzed Synthesis of Microporous Hard Carbon Embedded with Expanded Nanographite for Enhanced Lithium/Sodium Storage. Yu ZL; Xin S; You Y; Yu L; Lin Y; Xu DW; Qiao C; Huang ZH; Yang N; Yu SH; Goodenough JB J Am Chem Soc; 2016 Nov; 138(45):14915-14922. PubMed ID: 27766842 [TBL] [Abstract][Full Text] [Related]
14. Novel Method of Fabricating Free-Standing and Nitrogen-Doped 3D Hierarchically Porous Carbon Monoliths as Anodes for High-Performance Sodium-Ion Batteries by Supercritical CO Gong J; Zhao G; Feng J; Wang G; An Y; Zhang L; Li B ACS Appl Mater Interfaces; 2019 Mar; 11(9):9125-9135. PubMed ID: 30741523 [TBL] [Abstract][Full Text] [Related]
15. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes. Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439 [TBL] [Abstract][Full Text] [Related]
16. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity. Wang L; Gong H; Wang C; Wang D; Tang K; Qian Y Nanoscale; 2012 Nov; 4(21):6850-5. PubMed ID: 23034730 [TBL] [Abstract][Full Text] [Related]
17. TiP Wen Y; Chen L; Pang Y; Guo Z; Bin D; Wang YG; Wang C; Xia Y ACS Appl Mater Interfaces; 2017 Mar; 9(9):8075-8082. PubMed ID: 28212003 [TBL] [Abstract][Full Text] [Related]
18. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries. Zhao T; She S; Ji X; Guo X; Jin W; Zhu R; Dang A; Li H; Li T; Wei B Sci Rep; 2016 Sep; 6():33833. PubMed ID: 27671848 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the Li storage capacity and initial coulombic efficiency for porous carbons by sulfur doping. Ning G; Ma X; Zhu X; Cao Y; Sun Y; Qi C; Fan Z; Li Y; Zhang X; Lan X; Gao J ACS Appl Mater Interfaces; 2014 Sep; 6(18):15950-8. PubMed ID: 25188430 [TBL] [Abstract][Full Text] [Related]
20. Porous pyrrhotite Fe Guo X; Wang S; Yang B; Xu Y; Liu Y; Pang H J Colloid Interface Sci; 2020 Mar; 561():801-807. PubMed ID: 31767394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]