These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 31981929)
1. Building near-complete plant genomes. Michael TP; VanBuren R Curr Opin Plant Biol; 2020 Apr; 54():26-33. PubMed ID: 31981929 [TBL] [Abstract][Full Text] [Related]
2. Linked read technology for assembling large complex and polyploid genomes. Ott A; Schnable JC; Yeh CT; Wu L; Liu C; Hu HC; Dalgard CL; Sarkar S; Schnable PS BMC Genomics; 2018 Sep; 19(1):651. PubMed ID: 30180802 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing. Goldstein S; Beka L; Graf J; Klassen JL BMC Genomics; 2019 Jan; 20(1):23. PubMed ID: 30626323 [TBL] [Abstract][Full Text] [Related]
4. Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise. Peona V; Blom MPK; Xu L; Burri R; Sullivan S; Bunikis I; Liachko I; Haryoko T; Jønsson KA; Zhou Q; Irestedt M; Suh A Mol Ecol Resour; 2021 Jan; 21(1):263-286. PubMed ID: 32937018 [TBL] [Abstract][Full Text] [Related]
5. Recent Advances in Assembly of Complex Plant Genomes. Kong W; Wang Y; Zhang S; Yu J; Zhang X Genomics Proteomics Bioinformatics; 2023 Jun; 21(3):427-439. PubMed ID: 37100237 [TBL] [Abstract][Full Text] [Related]
6. De novo chromosome level assembly of a plant genome from long read sequence data. Sharma P; Masouleh AK; Topp B; Furtado A; Henry RJ Plant J; 2022 Feb; 109(3):727-736. PubMed ID: 34784084 [TBL] [Abstract][Full Text] [Related]
7. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. VanBuren R; Bryant D; Edger PP; Tang H; Burgess D; Challabathula D; Spittle K; Hall R; Gu J; Lyons E; Freeling M; Bartels D; Ten Hallers B; Hastie A; Michael TP; Mockler TC Nature; 2015 Nov; 527(7579):508-11. PubMed ID: 26560029 [TBL] [Abstract][Full Text] [Related]
8. Impact of short-read sequencing on the misassembly of a plant genome. Wang P; Meng F; Moore BM; Shiu SH BMC Genomics; 2021 Feb; 22(1):99. PubMed ID: 33530937 [TBL] [Abstract][Full Text] [Related]
9. Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes. Jung H; Winefield C; Bombarely A; Prentis P; Waterhouse P Trends Plant Sci; 2019 Aug; 24(8):700-724. PubMed ID: 31208890 [TBL] [Abstract][Full Text] [Related]
10. Exploring structural variation and gene family architecture with De Novo assemblies of 15 Medicago genomes. Zhou P; Silverstein KA; Ramaraj T; Guhlin J; Denny R; Liu J; Farmer AD; Steele KP; Stupar RM; Miller JR; Tiffin P; Mudge J; Young ND BMC Genomics; 2017 Mar; 18(1):261. PubMed ID: 28347275 [TBL] [Abstract][Full Text] [Related]
11. Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome. Faino L; Seidl MF; Datema E; van den Berg GC; Janssen A; Wittenberg AH; Thomma BP mBio; 2015 Aug; 6(4):. PubMed ID: 26286689 [TBL] [Abstract][Full Text] [Related]
12. Detection of active transposable elements in Arabidopsis thaliana using Oxford Nanopore Sequencing technology. Debladis E; Llauro C; Carpentier MC; Mirouze M; Panaud O BMC Genomics; 2017 Jul; 18(1):537. PubMed ID: 28715998 [TBL] [Abstract][Full Text] [Related]
13. De novo phasing resolves haplotype sequences in complex plant genomes. Guk JY; Jang MJ; Choi JW; Lee YM; Kim S Plant Biotechnol J; 2022 Jun; 20(6):1031-1041. PubMed ID: 35332665 [TBL] [Abstract][Full Text] [Related]
14. Gamete binning: chromosome-level and haplotype-resolved genome assembly enabled by high-throughput single-cell sequencing of gamete genomes. Campoy JA; Sun H; Goel M; Jiao WB; Folz-Donahue K; Wang N; Rubio M; Liu C; Kukat C; Ruiz D; Huettel B; Schneeberger K Genome Biol; 2020 Dec; 21(1):306. PubMed ID: 33372615 [TBL] [Abstract][Full Text] [Related]
15. Improvements in Genomic Technologies: Application to Crop Genomics. Yuan Y; Bayer PE; Batley J; Edwards D Trends Biotechnol; 2017 Jun; 35(6):547-558. PubMed ID: 28284542 [TBL] [Abstract][Full Text] [Related]
16. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Belser C; Istace B; Denis E; Dubarry M; Baurens FC; Falentin C; Genete M; Berrabah W; Chèvre AM; Delourme R; Deniot G; Denoeud F; Duffé P; Engelen S; Lemainque A; Manzanares-Dauleux M; Martin G; Morice J; Noel B; Vekemans X; D'Hont A; Rousseau-Gueutin M; Barbe V; Cruaud C; Wincker P; Aury JM Nat Plants; 2018 Nov; 4(11):879-887. PubMed ID: 30390080 [TBL] [Abstract][Full Text] [Related]
17. Long Range Sequencing and Validation of Insect Genome Assemblies. Saha S Methods Mol Biol; 2019; 1858():33-44. PubMed ID: 30414109 [TBL] [Abstract][Full Text] [Related]
18. Era of gapless plant genomes: innovations in sequencing and mapping technologies revolutionize genomics and breeding. Gladman N; Goodwin S; Chougule K; Richard McCombie W; Ware D Curr Opin Biotechnol; 2023 Feb; 79():102886. PubMed ID: 36640454 [TBL] [Abstract][Full Text] [Related]
19. [Plant Genome Sequencing: Modern Technologies and Novel Opportunities for Breeding]. Dmitriev AA; Pushkova EN; Melnikova NV Mol Biol (Mosk); 2022; 56(4):531-545. PubMed ID: 35964310 [TBL] [Abstract][Full Text] [Related]
20. Assembly of chloroplast genomes with long- and short-read data: a comparison of approaches using Eucalyptus pauciflora as a test case. Wang W; Schalamun M; Morales-Suarez A; Kainer D; Schwessinger B; Lanfear R BMC Genomics; 2018 Dec; 19(1):977. PubMed ID: 30594129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]