BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31981954)

  • 1. Whole-genome re-sequencing and transcriptome reveal cadmium tolerance related genes and pathways in Chlamydomonas reinhardtii.
    Yu Z; Zhang T; Zhu Y
    Ecotoxicol Environ Saf; 2020 Mar; 191():110231. PubMed ID: 31981954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological changes in Chlamydomonas reinhardtii after 1000 generations of selection of cadmium exposure at environmentally relevant concentrations.
    Yu Z; Wei H; Hao R; Chu H; Zhu Y
    Environ Sci Process Impacts; 2018 Jun; 20(6):923-933. PubMed ID: 29725674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of Chlamydomonas reinhardtii to cadmium stress is associated with phototaxis.
    Yu Z; Zhang T; Hao R; Zhu Y
    Environ Sci Process Impacts; 2019 Jun; 21(6):1011-1020. PubMed ID: 31120077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC 121.
    Samadani M; Perreault F; Oukarroum A; Dewez D
    Chemosphere; 2018 Jan; 191():174-182. PubMed ID: 29032262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ evaluation of cadmium biomarkers in green algae.
    Simon DF; Davis TA; Tercier-Waeber ML; England R; Wilkinson KJ
    Environ Pollut; 2011 Oct; 159(10):2630-6. PubMed ID: 21696872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of TiO
    Yu Z; Hao R; Zhang L; Zhu Y
    Ecotoxicol Environ Saf; 2018 Jul; 156():75-86. PubMed ID: 29533210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress in the algae Chlamydomonas reinhardtii exposed to biocides.
    Almeida AC; Gomes T; Langford K; Thomas KV; Tollefsen KE
    Aquat Toxicol; 2017 Aug; 189():50-59. PubMed ID: 28582701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules.
    Lavoie M; Le Faucheur S; Fortin C; Campbell PG
    Aquat Toxicol; 2009 Apr; 92(2):65-75. PubMed ID: 19201040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene.
    Aksmann A; Pokora W; Baścik-Remisiewicz A; Dettlaff-Pokora A; Wielgomas B; Dziadziuszko M; Tukaj Z
    Ecotoxicol Environ Saf; 2014 Dec; 110():31-40. PubMed ID: 25193882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of copper and cadmium exposure on toxicity endpoints and gene expression in Chlamydomonas reinhardtii.
    Stoiber TL; Shafer MM; Armstrong DE
    Environ Toxicol Chem; 2010 Jan; 29(1):191-200. PubMed ID: 20821435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relief of arsenate toxicity by Cd-stimulated phytochelatin synthesis in the green alga Chlamydomonas reinhardtii.
    Kobayashi I; Fujiwara S; Saegusa H; Inouhe M; Matsumoto H; Tsuzuki M
    Mar Biotechnol (NY); 2006; 8(1):94-101. PubMed ID: 16249965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii.
    Jamers A; Blust R; De Coen W; Griffin JL; Jones OA
    Aquat Toxicol; 2013 Jan; 126():355-64. PubMed ID: 23063003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic signatures in Chlamydomonas reinhardtii as Cd biomarkers in metal mixtures.
    Hutchins CM; Simon DF; Zerges W; Wilkinson KJ
    Aquat Toxicol; 2010 Oct; 100(1):120-7. PubMed ID: 20701989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model.
    Xie M; Sun Y; Feng J; Gao Y; Zhu L
    Aquat Toxicol; 2019 May; 210():106-116. PubMed ID: 30844631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of chromium on photosynthetic and photoreceptive apparatus of the alga Chlamydomonas reinhardtii.
    Rodríguez MC; Barsanti L; Passarelli V; Evangelista V; Conforti V; Gualtieri P
    Environ Res; 2007 Oct; 105(2):234-9. PubMed ID: 17346694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global expression profiling of Chlamydomonas reinhardtii exposed to trace levels of free cadmium.
    Simon DF; Descombes P; Zerges W; Wilkinson KJ
    Environ Toxicol Chem; 2008 Aug; 27(8):1668-75. PubMed ID: 18384239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii.
    Wang Y; Cheng ZZ; Chen X; Zheng Q; Yang ZM
    Plant Sci; 2015 Nov; 240():120-9. PubMed ID: 26475193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity, Biodegradation, and Metabolic Fate of Organophosphorus Pesticide Trichlorfon on the Freshwater Algae
    Wan L; Wu Y; Ding H; Zhang W
    J Agric Food Chem; 2020 Feb; 68(6):1645-1653. PubMed ID: 31972072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased metal tolerance and bioaccumulation of zinc and cadmium in Chlamydomonas reinhardtii expressing a AtHMA4 C-terminal domain protein.
    Ibuot A; Webster RE; Williams LE; Pittman JK
    Biotechnol Bioeng; 2020 Oct; 117(10):2996-3005. PubMed ID: 32579250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium accumulation and toxicity affect the extracytoplasmic polyphosphate level in Chlamydomonas reinhardtii.
    Samadani M; Dewez D
    Ecotoxicol Environ Saf; 2018 Dec; 166():200-206. PubMed ID: 30269015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.