These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 31981954)
1. Whole-genome re-sequencing and transcriptome reveal cadmium tolerance related genes and pathways in Chlamydomonas reinhardtii. Yu Z; Zhang T; Zhu Y Ecotoxicol Environ Saf; 2020 Mar; 191():110231. PubMed ID: 31981954 [TBL] [Abstract][Full Text] [Related]
2. Physiological changes in Chlamydomonas reinhardtii after 1000 generations of selection of cadmium exposure at environmentally relevant concentrations. Yu Z; Wei H; Hao R; Chu H; Zhu Y Environ Sci Process Impacts; 2018 Jun; 20(6):923-933. PubMed ID: 29725674 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity of Chlamydomonas reinhardtii to cadmium stress is associated with phototaxis. Yu Z; Zhang T; Hao R; Zhu Y Environ Sci Process Impacts; 2019 Jun; 21(6):1011-1020. PubMed ID: 31120077 [TBL] [Abstract][Full Text] [Related]
4. Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC 121. Samadani M; Perreault F; Oukarroum A; Dewez D Chemosphere; 2018 Jan; 191():174-182. PubMed ID: 29032262 [TBL] [Abstract][Full Text] [Related]
5. In situ evaluation of cadmium biomarkers in green algae. Simon DF; Davis TA; Tercier-Waeber ML; England R; Wilkinson KJ Environ Pollut; 2011 Oct; 159(10):2630-6. PubMed ID: 21696872 [TBL] [Abstract][Full Text] [Related]
6. Effects of TiO Yu Z; Hao R; Zhang L; Zhu Y Ecotoxicol Environ Saf; 2018 Jul; 156():75-86. PubMed ID: 29533210 [TBL] [Abstract][Full Text] [Related]
7. Oxidative stress in the algae Chlamydomonas reinhardtii exposed to biocides. Almeida AC; Gomes T; Langford K; Thomas KV; Tollefsen KE Aquat Toxicol; 2017 Aug; 189():50-59. PubMed ID: 28582701 [TBL] [Abstract][Full Text] [Related]
8. Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules. Lavoie M; Le Faucheur S; Fortin C; Campbell PG Aquat Toxicol; 2009 Apr; 92(2):65-75. PubMed ID: 19201040 [TBL] [Abstract][Full Text] [Related]
9. Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene. Aksmann A; Pokora W; Baścik-Remisiewicz A; Dettlaff-Pokora A; Wielgomas B; Dziadziuszko M; Tukaj Z Ecotoxicol Environ Saf; 2014 Dec; 110():31-40. PubMed ID: 25193882 [TBL] [Abstract][Full Text] [Related]
10. Differential effects of copper and cadmium exposure on toxicity endpoints and gene expression in Chlamydomonas reinhardtii. Stoiber TL; Shafer MM; Armstrong DE Environ Toxicol Chem; 2010 Jan; 29(1):191-200. PubMed ID: 20821435 [TBL] [Abstract][Full Text] [Related]
11. Relief of arsenate toxicity by Cd-stimulated phytochelatin synthesis in the green alga Chlamydomonas reinhardtii. Kobayashi I; Fujiwara S; Saegusa H; Inouhe M; Matsumoto H; Tsuzuki M Mar Biotechnol (NY); 2006; 8(1):94-101. PubMed ID: 16249965 [TBL] [Abstract][Full Text] [Related]
12. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii. Jamers A; Blust R; De Coen W; Griffin JL; Jones OA Aquat Toxicol; 2013 Jan; 126():355-64. PubMed ID: 23063003 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic signatures in Chlamydomonas reinhardtii as Cd biomarkers in metal mixtures. Hutchins CM; Simon DF; Zerges W; Wilkinson KJ Aquat Toxicol; 2010 Oct; 100(1):120-7. PubMed ID: 20701989 [TBL] [Abstract][Full Text] [Related]
14. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model. Xie M; Sun Y; Feng J; Gao Y; Zhu L Aquat Toxicol; 2019 May; 210():106-116. PubMed ID: 30844631 [TBL] [Abstract][Full Text] [Related]
15. Effects of chromium on photosynthetic and photoreceptive apparatus of the alga Chlamydomonas reinhardtii. Rodríguez MC; Barsanti L; Passarelli V; Evangelista V; Conforti V; Gualtieri P Environ Res; 2007 Oct; 105(2):234-9. PubMed ID: 17346694 [TBL] [Abstract][Full Text] [Related]
16. Global expression profiling of Chlamydomonas reinhardtii exposed to trace levels of free cadmium. Simon DF; Descombes P; Zerges W; Wilkinson KJ Environ Toxicol Chem; 2008 Aug; 27(8):1668-75. PubMed ID: 18384239 [TBL] [Abstract][Full Text] [Related]
17. CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii. Wang Y; Cheng ZZ; Chen X; Zheng Q; Yang ZM Plant Sci; 2015 Nov; 240():120-9. PubMed ID: 26475193 [TBL] [Abstract][Full Text] [Related]
18. Toxicity, Biodegradation, and Metabolic Fate of Organophosphorus Pesticide Trichlorfon on the Freshwater Algae Wan L; Wu Y; Ding H; Zhang W J Agric Food Chem; 2020 Feb; 68(6):1645-1653. PubMed ID: 31972072 [TBL] [Abstract][Full Text] [Related]
19. Increased metal tolerance and bioaccumulation of zinc and cadmium in Chlamydomonas reinhardtii expressing a AtHMA4 C-terminal domain protein. Ibuot A; Webster RE; Williams LE; Pittman JK Biotechnol Bioeng; 2020 Oct; 117(10):2996-3005. PubMed ID: 32579250 [TBL] [Abstract][Full Text] [Related]
20. Cadmium accumulation and toxicity affect the extracytoplasmic polyphosphate level in Chlamydomonas reinhardtii. Samadani M; Dewez D Ecotoxicol Environ Saf; 2018 Dec; 166():200-206. PubMed ID: 30269015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]