BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31981954)

  • 21. Translatomics and physiological analyses of the detoxification mechanism of green alga Chlamydomonas reinhardtii to cadmium toxicity.
    Zhang B; Tang Y; Yu F; Peng Z; Yao S; Deng X; Long H; Wang X; Huang K
    J Hazard Mater; 2023 Apr; 448():130990. PubMed ID: 36860060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM.
    François L; Fortin C; Campbell PG
    Aquat Toxicol; 2007 Aug; 84(2):123-32. PubMed ID: 17651821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal stoichiometry in predicting Cd and Cu toxicity to a freshwater green alga Chlamydomonas reinhardtii.
    Wang WX; Dei RC
    Environ Pollut; 2006 Jul; 142(2):303-12. PubMed ID: 16310914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative stress potential of the herbicides bifenox and metribuzin in the microalgae Chlamydomonas reinhardtii.
    Almeida AC; Gomes T; Langford K; Thomas KV; Tollefsen KE
    Aquat Toxicol; 2019 May; 210():117-128. PubMed ID: 30849631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila.
    Puente-Sánchez F; Díaz S; Penacho V; Aguilera A; Olsson S
    Aquat Toxicol; 2018 Jul; 200():62-72. PubMed ID: 29727772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii.
    Zhang S; Qiu CB; Zhou Y; Jin ZP; Yang H
    Ecotoxicology; 2011 Mar; 20(2):337-47. PubMed ID: 21153053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationships between surface-bound and internalized copper and cadmium and toxicity in Chlamydomonas reinhardtii.
    Stoiber TL; Shafer MM; Armstrong DE
    Environ Toxicol Chem; 2012 Feb; 31(2):324-35. PubMed ID: 22045579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach.
    Gillet S; Decottignies P; Chardonnet S; Le Maréchal P
    Photosynth Res; 2006 Sep; 89(2-3):201-11. PubMed ID: 17103236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diclofenac and atrazine restrict the growth of a synchronous Chlamydomonas reinhardtii population via various mechanisms.
    Harshkova D; Majewska M; Pokora W; Baścik-Remisiewicz A; Tułodziecki S; Aksmann A
    Aquat Toxicol; 2021 Jan; 230():105698. PubMed ID: 33307391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High salinity acclimatization alleviated cadmium toxicity in Dunaliella salina: Transcriptomic and physiological evidence.
    Zhu QL; Bao J; Liu J; Zheng JL
    Aquat Toxicol; 2020 Jun; 223():105492. PubMed ID: 32361487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contrasting detoxification mechanisms of Chlamydomonas reinhardtii under Cd and Pb stress.
    Li C; Zheng C; Fu H; Zhai S; Hu F; Naveed S; Zhang C; Ge Y
    Chemosphere; 2021 Jul; 274():129771. PubMed ID: 33549886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity.
    Korkaric M; Xiao M; Behra R; Eggen RI
    Aquat Toxicol; 2015 Oct; 167():209-19. PubMed ID: 26349947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutathione peroxidase 5 deficiency induces lipid metabolism regulated by reactive oxygen species in Chlamydomonas reinhardtii.
    Ma X; Wei H; Zhang Y; Duan Y; Zhang W; Cheng Y; Xia XQ; Shi M
    Microb Pathog; 2020 Oct; 147():104358. PubMed ID: 32599138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of Autophagy by Metals in Chlamydomonas reinhardtii.
    Pérez-Martín M; Blaby-Haas CE; Pérez-Pérez ME; Andrés-Garrido A; Blaby IK; Merchant SS; Crespo JL
    Eukaryot Cell; 2015 Sep; 14(9):964-73. PubMed ID: 26163317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii.
    Röhder LA; Brandt T; Sigg L; Behra R
    Aquat Toxicol; 2014 Jul; 152():121-30. PubMed ID: 24747084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii.
    Pan CG; Peng FJ; Shi WJ; Hu LX; Wei XD; Ying GG
    Ecotoxicol Environ Saf; 2018 Feb; 148():393-401. PubMed ID: 29100157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant Triclosan.
    González-Pleiter M; Rioboo C; Reguera M; Abreu I; Leganés F; Cid Á; Fernández-Piñas F
    Aquat Toxicol; 2017 May; 186():50-66. PubMed ID: 28249228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pools of cadmium in Chlamydomonas reinhardtii revealed by chemical imaging and XAS spectroscopy.
    Penen F; Isaure MP; Dobritzsch D; Bertalan I; Castillo-Michel H; Proux O; Gontier E; Le Coustumer P; Schaumlöffel D
    Metallomics; 2017 Jul; 9(7):910-923. PubMed ID: 28598481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HISN3 mediates adaptive response of Chlamydomonas reinhardtii to excess nickel.
    Zheng Q; Cheng ZZ; Yang ZM
    Plant Cell Physiol; 2013 Dec; 54(12):1951-62. PubMed ID: 24078767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae.
    Siripornadulsil S; Traina S; Verma DP; Sayre RT
    Plant Cell; 2002 Nov; 14(11):2837-47. PubMed ID: 12417705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.