These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31982002)

  • 1. Effect of Time and Direction Preparation on Ankle Muscle Response During Backward Translation of a Support Surface in Stance.
    Matsuoka M; Kunimura H; Hiraoka K
    Motor Control; 2020 Jan; 24(2):253-273. PubMed ID: 31982002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presetting of the Corticospinal Excitability in the Tibialis Anterior Muscle in Relation to Prediction of the Magnitude and Direction of Postural Perturbations.
    Fujio K; Obata H; Kawashima N; Nakazawa K
    Front Hum Neurosci; 2019; 13():4. PubMed ID: 30705626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of stance leg muscles induced by support surface translation during gait.
    Fukuda S; Oda H; Kawasaki T; Sawaguchi Y; Matsuoka M; Tsujinaka R; Hiraoka K
    Heliyon; 2022 Sep; 8(9):e10470. PubMed ID: 36097487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interlimb coordination of leg-muscle activation during perturbation of stance in humans.
    Dietz V; Horstmann GA; Berger W
    J Neurophysiol; 1989 Sep; 62(3):680-93. PubMed ID: 2769353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time Window of Perturbation-Induced Response Triggered by Ankle Motion and Body Sway above the Ankle.
    Hiraoka K; Kuramitsu T; Nii N; Osumi M; Tanaka N
    Brain Sci; 2020 Apr; 10(4):. PubMed ID: 32290377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is lower leg proprioception essential for triggering human automatic postural responses?
    Bloem BR; Allum JH; Carpenter MG; Honegger F
    Exp Brain Res; 2000 Feb; 130(3):375-91. PubMed ID: 10706436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man.
    Allum JH; Carpenter MG; Honegger F; Adkin AL; Bloem BR
    J Physiol; 2002 Jul; 542(Pt 2):643-63. PubMed ID: 12122159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early and late stretch responses of human foot muscles induced by perturbation of stance.
    Schieppati M; Nardone A; Siliotto R; Grasso M
    Exp Brain Res; 1995; 105(3):411-22. PubMed ID: 7498395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of postural responses and step initiation: evidence for goal-directed postural interactions.
    Burleigh AL; Horak FB; Malouin F
    J Neurophysiol; 1994 Dec; 72(6):2892-902. PubMed ID: 7897497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EMG responses to maintain stance during multidirectional surface translations.
    Henry SM; Fung J; Horak FB
    J Neurophysiol; 1998 Oct; 80(4):1939-50. PubMed ID: 9772251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dopamine on postural control in parkinsonian subjects: scaling, set, and tone.
    Horak FB; Frank J; Nutt J
    J Neurophysiol; 1996 Jun; 75(6):2380-96. PubMed ID: 8793751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of instruction, prediction, and afferent sensory information on the postural organization of step initiation.
    Burleigh A; Horak F
    J Neurophysiol; 1996 Apr; 75(4):1619-28. PubMed ID: 8727400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebellar control of postural scaling and central set in stance.
    Horak FB; Diener HC
    J Neurophysiol; 1994 Aug; 72(2):479-93. PubMed ID: 7983513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of changing stance conditions on anticipatory postural adjustment and reaction time to voluntary arm movement in humans.
    Dietz V; Kowalewski R; Nakazawa K; Colombo G
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):617-27. PubMed ID: 10766937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human stance on a sinusoidally translating platform: balance control by feedforward and feedback mechanisms.
    Dietz V; Trippel M; Ibrahim IK; Berger W
    Exp Brain Res; 1993; 93(2):352-62. PubMed ID: 8491275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contingent negative variation and activation of postural preparation before postural perturbation by backward floor translation at different initial standing positions.
    Fujiwara K; Kiyota N; Maeda K
    Neurosci Lett; 2011 Feb; 490(2):135-9. PubMed ID: 21185354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans.
    Lavoie BA; Devanne H; Capaday C
    J Neurophysiol; 1997 Jul; 78(1):429-38. PubMed ID: 9242291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free and supported stance in Parkinson's disease. The effect of posture and 'postural set' on leg muscle responses to perturbation, and its relation to the severity of the disease.
    Schieppati M; Nardone A
    Brain; 1991 Jun; 114 ( Pt 3)():1227-44. PubMed ID: 2065247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.