BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31982537)

  • 1. Physical and antimicrobial properties of neutral nanoemulsions self-assembled from alkaline thyme oil and sodium caseinate mixtures.
    Zhang Y; Zhong Q
    Int J Biol Macromol; 2020 Apr; 148():1046-1052. PubMed ID: 31982537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial activity of thyme oil co-nanoemulsified with sodium caseinate and lecithin.
    Xue J; Michael Davidson P; Zhong Q
    Int J Food Microbiol; 2015 Oct; 210():1-8. PubMed ID: 26082324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin.
    Xue J; Zhong Q
    J Agric Food Chem; 2014 Oct; 62(40):9900-7. PubMed ID: 25233801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence of ripening inhibitors.
    Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2012 Dec; 60(48):12056-63. PubMed ID: 23140446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thyme Oil Encapsulated in Halloysite Nanotubes for Antimicrobial Packaging System.
    Lee MH; Seo HS; Park HJ
    J Food Sci; 2017 Apr; 82(4):922-932. PubMed ID: 28272803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and antimicrobial properties of cinnamon bark oil co-nanoemulsified by lauric arginate and Tween 80.
    Hilbig J; Ma Q; Davidson PM; Weiss J; Zhong Q
    Int J Food Microbiol; 2016 Sep; 233():52-59. PubMed ID: 27322724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ripening inhibitor type on formation, stability, and antimicrobial activity of thyme oil nanoemulsion.
    Ryu V; McClements DJ; Corradini MG; McLandsborough L
    Food Chem; 2018 Apr; 245():104-111. PubMed ID: 29287320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate).
    Chang Y; McLandsborough L; McClements DJ
    Food Chem; 2015 Apr; 172():298-304. PubMed ID: 25442557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.
    Ziani K; Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2011 Jun; 59(11):6247-55. PubMed ID: 21520914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial properties of microemulsions formulated with essential oils, soybean oil, and Tween 80.
    Ma Q; Davidson PM; Zhong Q
    Int J Food Microbiol; 2016 Jun; 226():20-5. PubMed ID: 27016636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Release Mechanism and Antibacterial Effect of Layer-By-Layer Self-Assembly Thyme Oil Microcapsule.
    Zhang Z; Zhang S; Su R; Xiong D; Feng W; Chen J
    J Food Sci; 2019 Jun; 84(6):1427-1438. PubMed ID: 31070787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of thyme oil-alginate-based coating on quality and microbial safety of fresh-cut apples.
    Sarengaowa ; Hu W; Jiang A; Xiu Z; Feng K
    J Sci Food Agric; 2018 Apr; 98(6):2302-2311. PubMed ID: 28990669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial activity of essential oils against Staphylococcus aureus biofilms.
    Vázquez-Sánchez D; Cabo ML; Rodríguez-Herrera JJ
    Food Sci Technol Int; 2015 Dec; 21(8):559-70. PubMed ID: 25280938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic antibacterial effects of ultrasound and thyme essential oils nanoemulsion against Escherichia coli O157:H7.
    Guo M; Zhang L; He Q; Arabi SA; Zhao H; Chen W; Ye X; Liu D
    Ultrason Sonochem; 2020 Sep; 66():104988. PubMed ID: 32222643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the efficacy of multiple physical, biological and natural antimicrobial interventions for control of pathogenic Escherichia coli on beef.
    Stratakos AC; Grant IR
    Food Microbiol; 2018 Dec; 76():209-218. PubMed ID: 30166143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens.
    Topuz OK; Özvural EB; Zhao Q; Huang Q; Chikindas M; Gölükçü M
    Food Chem; 2016 Jul; 203():117-123. PubMed ID: 26948596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoemulsions of thymol and eugenol co-emulsified by lauric arginate and lecithin.
    Ma Q; Davidson PM; Zhong Q
    Food Chem; 2016 Sep; 206():167-73. PubMed ID: 27041312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of antibacterial nanoemulsions incorporating thyme oil: Layer-by-layer self-assembly of whey protein isolate and chitosan hydrochloride.
    Li S; Sun J; Yan J; Zhang S; Shi C; McClements DJ; Liu X; Liu F
    Food Chem; 2021 Mar; 339():128016. PubMed ID: 33152858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for reducing Ostwald ripening phenomenon in nanoemulsions based on thyme essential oil.
    Trujillo-Cayado LA; Santos J; Calero N; Alfaro-Rodríguez MC; Muñoz J
    J Sci Food Agric; 2020 Mar; 100(4):1671-1677. PubMed ID: 31802496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial properties of nisin after glycation with lactose, maltodextrin and dextran and the thyme oil emulsions prepared thereof.
    Chen H; Davidson PM; Zhong Q
    Int J Food Microbiol; 2014 Nov; 191():75-81. PubMed ID: 25240139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.