BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31982579)

  • 1. Community structure of the creative brain at rest.
    Kenett YN; Betzel RF; Beaty RE
    Neuroimage; 2020 Apr; 210():116578. PubMed ID: 31982579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study.
    Chen X; Chen NX; Shen YQ; Li HX; Li L; Lu B; Zhu ZC; Fan Z; Yan CG
    Neuroimage; 2020 Nov; 221():117185. PubMed ID: 32711069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creativity and the default network: A functional connectivity analysis of the creative brain at rest.
    Beaty RE; Benedek M; Wilkins RW; Jauk E; Fink A; Silvia PJ; Hodges DA; Koschutnig K; Neubauer AC
    Neuropsychologia; 2014 Nov; 64():92-8. PubMed ID: 25245940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous cognition and its relationship to human creativity: A functional connectivity study involving a chain free association task.
    Marron TR; Berant E; Axelrod V; Faust M
    Neuroimage; 2020 Oct; 220():117064. PubMed ID: 32574810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust prediction of individual creative ability from brain functional connectivity.
    Beaty RE; Kenett YN; Christensen AP; Rosenberg MD; Benedek M; Chen Q; Fink A; Qiu J; Kwapil TR; Kane MJ; Silvia PJ
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):1087-1092. PubMed ID: 29339474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Realignment of Frontoparietal Subnetworks during Divergent Creative Thinking.
    Beaty RE; Cortes RA; Zeitlen DC; Weinberger AB; Green AE
    Cereb Cortex; 2021 Aug; 31(10):4464-4476. PubMed ID: 33895837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association between resting-state brain network topological organization and creative ability: Evidence from a multiple linear regression model.
    Jiao B; Zhang D; Liang A; Liang B; Wang Z; Li J; Cai Y; Gao M; Gao Z; Chang S; Huang R; Liu M
    Biol Psychol; 2017 Oct; 129():165-177. PubMed ID: 28890001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain networks underlying novel metaphor production.
    Beaty RE; Silvia PJ; Benedek M
    Brain Cogn; 2017 Feb; 111():163-170. PubMed ID: 28038366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in brain activity patterns during creative idea generation between eminent and non-eminent thinkers.
    Chrysikou EG; Jacial C; Yaden DB; van Dam W; Kaufman SB; Conklin CJ; Wintering NA; Abraham RE; Jung RE; Newberg AB
    Neuroimage; 2020 Oct; 220():117011. PubMed ID: 32504814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic functioning of transient resting-state coactivation networks in the Human Connectome Project.
    Janes AC; Peechatka AL; Frederick BB; Kaiser RH
    Hum Brain Mapp; 2020 Feb; 41(2):373-387. PubMed ID: 31639271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connectome-based evidence for creative thinking as an emergent property of ordinary cognitive operations.
    Zhuang K; Yang W; Li Y; Zhang J; Chen Q; Meng J; Wei D; Sun J; He L; Mao Y; Wang X; Vatansever D; Qiu J
    Neuroimage; 2021 Feb; 227():117632. PubMed ID: 33316392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Originality of divergent thinking is associated with working memory-related brain activity: Evidence from a large sample study.
    Takeuchi H; Taki Y; Nouchi R; Yokoyama R; Kotozaki Y; Nakagawa S; Sekiguchi A; Iizuka K; Hanawa S; Araki T; Miyauchi CM; Sakaki K; Sassa Y; Nozawa T; Ikeda S; Yokota S; Magistro D; Kawashima R
    Neuroimage; 2020 Aug; 216():116825. PubMed ID: 32344064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG signals respond differently to idea generation, idea evolution and evaluation in a loosely controlled creativity experiment.
    Jia W; Zeng Y
    Sci Rep; 2021 Jan; 11(1):2119. PubMed ID: 33483583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical electrophysiological evidence for individual-specific temporal organization of brain functional networks.
    Shu S; Qin L; Yin Y; Han M; Cui W; Gao JH
    Hum Brain Mapp; 2020 Jun; 41(8):2160-2172. PubMed ID: 31961469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Association between Resting Functional Connectivity and Visual Creativity.
    Li W; Yang J; Zhang Q; Li G; Qiu J
    Sci Rep; 2016 May; 6():25395. PubMed ID: 27138732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse functional interaction driven by control-default network hubs supports creative thinking.
    Zhuang K; Zeitlen DC; Beaty RE; Vatansever D; Chen Q; Qiu J
    Cereb Cortex; 2023 Nov; 33(23):11206-11224. PubMed ID: 37823346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain hemispheric involvement in visuospatial and verbal divergent thinking.
    Chen Q; Beaty RE; Cui Z; Sun J; He H; Zhuang K; Ren Z; Liu G; Qiu J
    Neuroimage; 2019 Nov; 202():116065. PubMed ID: 31398434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-dependent functional connectivity in resting state networks.
    Samogin J; Marino M; Porcaro C; Wenderoth N; Dupont P; Swinnen SP; Mantini D
    Hum Brain Mapp; 2020 Dec; 41(18):5187-5198. PubMed ID: 32840936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of inter-individual variability on the estimation of default mode network in temporal concatenation group ICA.
    Hu Y; Yang Z
    Neuroimage; 2021 Aug; 237():118114. PubMed ID: 33933594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stationary EEG pattern relates to large-scale resting state networks - An EEG-fMRI study connecting brain networks across time-scales.
    Daniel Arzate-Mena J; Abela E; Olguín-Rodríguez PV; Ríos-Herrera W; Alcauter S; Schindler K; Wiest R; Müller MF; Rummel C
    Neuroimage; 2022 Feb; 246():118763. PubMed ID: 34863961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.