These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 31982711)

  • 21. Receding Contact Line Motion on Nanopatterned and Micropatterned Polymer Surfaces.
    Gao N; Chiu M; Neto C
    Langmuir; 2017 Nov; 33(44):12602-12608. PubMed ID: 29016148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gravitational Effect on the Advancing and Receding Angles of a Two-Dimensional Cassie-Baxter Droplet on a Textured Surface.
    Kim D; Jeong M; Kang K; Ryu S
    Langmuir; 2020 Jun; 36(21):6061-6069. PubMed ID: 32370510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A molecular-dynamics study of sliding liquid nanodrops: Dynamic contact angles and the pearling transition.
    Fernández-Toledano JC; Blake TD; Limat L; De Coninck J
    J Colloid Interface Sci; 2019 Jul; 548():66-76. PubMed ID: 30986712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contact Angle Determination on Hydrophilic and Superhydrophilic Surfaces by Using r-θ-Type Capillary Bridges.
    Nagy N
    Langmuir; 2019 Apr; 35(15):5202-5212. PubMed ID: 30916567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermally activated depinning motion of contact lines in pseudopartial wetting.
    Du L; Bodiguel H; Colin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012402. PubMed ID: 25122310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Viscoelastic liquid bridge breakup and liquid transfer between two surfaces.
    Chen H; Ponce-Torres A; Montanero JM; Amirfazli A
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):1251-1256. PubMed ID: 32957058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shear distortion and failure of capillary bridges. Wetting information beyond contact angle analysis.
    Wang L; McCarthy TJ
    Langmuir; 2013 Jun; 29(25):7776-81. PubMed ID: 23692651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavior of a Liquid Bridge between Nonparallel Hydrophobic Surfaces.
    Ataei M; Chen H; Amirfazli A
    Langmuir; 2017 Dec; 33(51):14674-14683. PubMed ID: 29148812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generalized models for advancing and receding contact angles of fakir droplets on pillared and pored surfaces.
    Jiang Y; Xu W; Sarshar MA; Choi CH
    J Colloid Interface Sci; 2019 Sep; 552():359-371. PubMed ID: 31132638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patterned deposition at moving contact lines.
    Thiele U
    Adv Colloid Interface Sci; 2014 Apr; 206():399-413. PubMed ID: 24331374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-gradient regular solution model for simple liquids wetting complex surface topologies.
    Akerboom S; Kamperman M; Leermakers FA
    Beilstein J Nanotechnol; 2016; 7():1377-1396. PubMed ID: 27826512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wetting behaviors of individual nanostructures.
    Wong TS; Huang AP; Ho CM
    Langmuir; 2009 Jun; 25(12):6599-603. PubMed ID: 19459591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic formulation of the barrier for heterogeneous pinned nucleation: Implication to the crossover scenarios associated with barrierless and homogeneous nucleation.
    Singha SK; Das PK; Maiti B
    J Chem Phys; 2017 Jun; 146(23):234702. PubMed ID: 28641419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of Contact Line Pinning and Depinning of Droplets Evaporating on Microribs.
    Mazloomi Moqaddam A; Derome D; Carmeliet J
    Langmuir; 2018 May; 34(19):5635-5645. PubMed ID: 29667830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Droplet compression and relaxation by a superhydrophobic surface: contact angle hysteresis.
    Hong SJ; Chou TH; Chan SH; Sheng YJ; Tsao HK
    Langmuir; 2012 Apr; 28(13):5606-13. PubMed ID: 22390774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of two-dimensional liquid bridges.
    Coelho RCV; Cordeiro LARG; Gazola RB; Teixeira PIC
    J Phys Condens Matter; 2022 Mar; 34(20):. PubMed ID: 35226894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contact line friction and dynamic contact angles of a capillary bridge between superhydrophobic nanostructured surfaces.
    Lee E; Müller-Plathe F
    J Chem Phys; 2022 Jul; 157(2):024701. PubMed ID: 35840373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow.
    Ashish Saha A; Mitra SK
    J Colloid Interface Sci; 2009 Nov; 339(2):461-80. PubMed ID: 19732904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pinning-Depinning Mechanism of the Contact Line during Evaporation on Chemically Patterned Surfaces: A Lattice Boltzmann Study.
    Li Q; Zhou P; Yan HJ
    Langmuir; 2016 Sep; 32(37):9389-96. PubMed ID: 27579557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental study of dynamic contact angles on rough hydrophobic surfaces.
    Mohammad Karim A; Rothstein JP; Kavehpour HP
    J Colloid Interface Sci; 2018 Mar; 513():658-665. PubMed ID: 29207348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.