These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 31982712)

  • 1. Moderate oxygen-deficient Fe(III) oxide nanoplates for high performance symmetric supercapacitors.
    Zhang S; Wang X; Li Y; Zhang Y; Hu Q; Hua X; Liu G; Xie E; Zhang Z
    J Colloid Interface Sci; 2020 Apr; 565():458-464. PubMed ID: 31982712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing electrochemical performance of electrode material via combining defect and heterojunction engineering for supercapacitors.
    Zhou X; Yue X; Dong Y; Zheng Q; Lin D; Du X; Qu G
    J Colloid Interface Sci; 2021 Oct; 599():68-78. PubMed ID: 33933798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ag-modified Fe
    Guan Y; Ji P; Wan J; Zhang D; Wang Z; Tian H; Hu C; Hu B; Tang Q; Xi Y
    Nanotechnology; 2020 Mar; 31(12):125405. PubMed ID: 31751972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Well-Ordered Oxygen-Deficient CoMoO
    Chi K; Zhang Z; Lv Q; Xie C; Xiao J; Xiao F; Wang S
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6044-6053. PubMed ID: 28102070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Etching-Assisted Crumpled Graphene Wrapped Spiky Iron Oxide Particles for High-Performance Li-Ion Hybrid Supercapacitor.
    Kim E; Kim H; Park BJ; Han YH; Park JH; Cho J; Lee SS; Son JG
    Small; 2018 Apr; 14(16):e1704209. PubMed ID: 29543382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors.
    Owusu KA; Qu L; Li J; Wang Z; Zhao K; Yang C; Hercule KM; Lin C; Shi C; Wei Q; Zhou L; Mai L
    Nat Commun; 2017 Mar; 8():14264. PubMed ID: 28262797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen vacancy-engineered Fe
    Han F; Xu J; Zhou J; Tang J; Tang W
    Nanoscale; 2019 Jul; 11(26):12477-12483. PubMed ID: 31225562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance MoO₃ Nanoplate Electrode for Asymmetric Supercapacitor with Long-Term Electrochemical Stability.
    Ji F; Jiang D; Xia Q; Pan X; Chen X; Zhang Y
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5817-5824. PubMed ID: 30961744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing energy storage capacity of iron oxide-based anodes by adjusting Fe (II/III) ratio in spinel crystalline.
    Jiang X; Chen T; Liu B; Sun R; Fu J; Jiang X; Cui P; Liu Z; Han W
    Nanotechnology; 2021 Jul; 32(39):. PubMed ID: 34171854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Expanded Graphene-Metal Oxide Film via Solid-State Microwave Irradiation for Aqueous Asymmetric Supercapacitors.
    Yang M; Lee KG; Lee SJ; Lee SB; Han YK; Choi BG
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22364-71. PubMed ID: 26387450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability.
    Guan C; Liu J; Wang Y; Mao L; Fan Z; Shen Z; Zhang H; Wang J
    ACS Nano; 2015 May; 9(5):5198-207. PubMed ID: 25868870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen-vacancy-rich nickel-cobalt layered double hydroxide electrode for high-performance supercapacitors.
    Liang H; Jia H; Lin T; Wang Z; Li C; Chen S; Qi J; Cao J; Fei W; Feng J
    J Colloid Interface Sci; 2019 Oct; 554():59-65. PubMed ID: 31279273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring Energy and Power Density through Controlling the Concentration of Oxygen Vacancies in V
    Bi W; Jahrman E; Seidler G; Wang J; Gao G; Wu G; Atif M; AlSalhi M; Cao G
    ACS Appl Mater Interfaces; 2019 May; 11(18):16647-16655. PubMed ID: 30977632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amorphous Fe
    Li D; Zhou J; Chen X; Song H
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30899-30907. PubMed ID: 27786458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-cost superior solid-state symmetric supercapacitors based on hematite nanocrystals.
    Peng S; Yu L; Lan B; Sun M; Cheng G; Liao S; Cao H; Deng Y
    Nanotechnology; 2016 Dec; 27(50):505404. PubMed ID: 27875337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen Vacancy-Induced Structural, Optical, and Enhanced Supercapacitive Performance of Zinc Oxide Anchored Graphitic Carbon Nanofiber Hybrid Electrodes.
    Dillip GR; Banerjee AN; Anitha VC; Deva Prasad Raju B; Joo SW; Min BK
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):5025-39. PubMed ID: 26836110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Synthesis of Hierarchical Mesoporous Honeycomb-like NiO for Aqueous Asymmetric Supercapacitors.
    Ren X; Guo C; Xu L; Li T; Hou L; Wei Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19930-40. PubMed ID: 26301430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon intermediate boosted Fe-ZIF derived α-Fe
    Dong T; Deng T; Chu X; Qin T; Wang H; Wang Z; Zhang W; Zheng W
    Nanotechnology; 2020 Mar; 31(13):135403. PubMed ID: 31770727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes.
    Zheng X; Yan X; Sun Y; Yu Y; Zhang G; Shen Y; Liang Q; Liao Q; Zhang Y
    J Colloid Interface Sci; 2016 Mar; 466():291-6. PubMed ID: 26748061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.