BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31982930)

  • 1. Different Interspecies Electron Transfer Patterns during Mesophilic and Thermophilic Syntrophic Propionate Degradation in Chemostats.
    Chen YT; Zeng Y; Wang HZ; Zheng D; Kamagata Y; Narihiro T; Nobu MK; Tang YQ
    Microb Ecol; 2020 Jul; 80(1):120-132. PubMed ID: 31982930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine-Accelerated Methanogenic Propionate Degradation in Paddy Soil Enrichment.
    Zhuang L; Ma J; Tang J; Tang Z; Zhou S
    Microb Ecol; 2017 May; 73(4):916-924. PubMed ID: 27815590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion.
    Dyksma S; Gallert C
    Environ Microbiol Rep; 2019 Aug; 11(4):558-570. PubMed ID: 30985964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Syntrophic Isovalerate-Degrading Bacteria and Their Energetic Cooperation with Methanogens in Methanogenic Chemostats.
    Chen YT; Zeng Y; Li J; Zhao XY; Yi Y; Gou M; Kamagata Y; Narihiro T; Nobu MK; Tang YQ
    Environ Sci Technol; 2020 Aug; 54(15):9618-9628. PubMed ID: 32667198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of conductive materials on microbial community during syntrophic propionate oxidization for biomethane recovery.
    Guo B; Zhang Y; Yu N; Liu Y
    Water Environ Res; 2021 Jan; 93(1):84-93. PubMed ID: 32391609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate.
    Yamada C; Kato S; Ueno Y; Ishii M; Igarashi Y
    J Biosci Bioeng; 2015 Jun; 119(6):678-82. PubMed ID: 25488041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using DNA-based stable isotope probing to reveal novel propionate- and acetate-oxidizing bacteria in propionate-fed mesophilic anaerobic chemostats.
    Wang HZ; Lv XM; Yi Y; Zheng D; Gou M; Nie Y; Hu B; Nobu MK; Narihiro T; Tang YQ
    Sci Rep; 2019 Nov; 9(1):17396. PubMed ID: 31758023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syntrophic entanglements for propionate and acetate oxidation under thermophilic and high-ammonia conditions.
    Singh A; Schnürer A; Dolfing J; Westerholm M
    ISME J; 2023 Nov; 17(11):1966-1978. PubMed ID: 37679429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-centric metagenomics analysis revealed the metabolic function of abundant microbial communities in thermal hydrolysis-assisted thermophilic anaerobic digesters under propionate stress.
    Zhang L; Gong X; Chen Z; Zhou Y
    Bioresour Technol; 2022 Sep; 360():127574. PubMed ID: 35792328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation.
    Cruz Viggi C; Rossetti S; Fazi S; Paiano P; Majone M; Aulenta F
    Environ Sci Technol; 2014 Jul; 48(13):7536-43. PubMed ID: 24901501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syntrophic oxidation of propionate in rice field soil at 15 and 30°C under methanogenic conditions.
    Gan Y; Qiu Q; Liu P; Rui J; Lu Y
    Appl Environ Microbiol; 2012 Jul; 78(14):4923-32. PubMed ID: 22582054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil.
    Lueders T; Pommerenke B; Friedrich MW
    Appl Environ Microbiol; 2004 Oct; 70(10):5778-86. PubMed ID: 15466514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of novel potential syntrophic acetate-oxidizing bacteria in thermophilic methanogenic chemostats.
    Zeng Y; Zheng D; Li L-P; Wang M; Gou M; Kamagata Y; Chen Y-T; Nobu MK; Tang Y-Q
    Appl Environ Microbiol; 2024 Feb; 90(2):e0109023. PubMed ID: 38259075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Syntrophic propionate degradation response to temperature decrease and microbial community shift in an UASB reactor.
    Ban Q; Li J; Zhang L; Jha AK; Zhang Y; Ai B
    J Microbiol Biotechnol; 2013 Mar; 23(3):382-9. PubMed ID: 23462012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil.
    Peng J; Wegner CE; Bei Q; Liu P; Liesack W
    Microbiome; 2018 Sep; 6(1):169. PubMed ID: 30231929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of Smithella-dominating propionate oxidation in a sediment enrichment by magnetite and carbon nanotubes.
    Xia X; Zhang J; Song T; Lu Y
    Environ Microbiol Rep; 2019 Apr; 11(2):236-248. PubMed ID: 30790444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of novel potential acetate-oxidizing bacteria in thermophilic methanogenic chemostats by DNA stable isotope probing.
    Zheng D; Wang HZ; Gou M; Nobu MK; Narihiro T; Hu B; Nie Y; Tang YQ
    Appl Microbiol Biotechnol; 2019 Oct; 103(20):8631-8645. PubMed ID: 31418053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of syntrophic interactions in methanogenic conversion of propionate.
    Cao L; Cox CD; He Q
    Appl Microbiol Biotechnol; 2021 Dec; 105(23):8937-8949. PubMed ID: 34694448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel strategy for relieving acid accumulation by enriching syntrophic associations of syntrophic fatty acid-oxidation bacteria and H
    Lv N; Zhao L; Wang R; Ning J; Pan X; Li C; Cai G; Zhu G
    Bioresour Technol; 2020 Oct; 313():123702. PubMed ID: 32615503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interspecies distances between propionic acid degraders and methanogens in syntrophic consortia for optimal hydrogen transfer.
    Felchner-Zwirello M; Winter J; Gallert C
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):9193-205. PubMed ID: 23233207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.