These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Climate and plant community diversity in space and time. Harrison S; Spasojevic MJ; Li D Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4464-4470. PubMed ID: 32071212 [TBL] [Abstract][Full Text] [Related]
23. Long-term species loss and homogenization of moth communities in Central Europe. Valtonen A; Hirka A; Szőcs L; Ayres MP; Roininen H; Csóka G J Anim Ecol; 2017 Jul; 86(4):730-738. PubMed ID: 28423183 [TBL] [Abstract][Full Text] [Related]
24. Phylogenetic structure of understorey annual and perennial plant species reveals opposing responses to aridity in a Mediterranean biodiversity hotspot. Massante JC; Köbel M; Pinho P; Gerhold P; Branquinho C; Nunes A Sci Total Environ; 2021 Mar; 761():144018. PubMed ID: 33352349 [TBL] [Abstract][Full Text] [Related]
25. Four decades of plant community change along a continental gradient of warming. Becker-Scarpitta A; Vissault S; Vellend M Glob Chang Biol; 2019 May; 25(5):1629-1641. PubMed ID: 30636090 [TBL] [Abstract][Full Text] [Related]
26. Transplants, Open Top Chambers (OTCs) and Gradient Studies Ask Different Questions in Climate Change Effects Studies. Yang Y; Halbritter AH; Klanderud K; Telford RJ; Wang G; Vandvik V Front Plant Sci; 2018; 9():1574. PubMed ID: 30450107 [TBL] [Abstract][Full Text] [Related]
27. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot. Brown KA; Parks KE; Bethell CA; Johnson SE; Mulligan M PLoS One; 2015; 10(4):e0122721. PubMed ID: 25856241 [TBL] [Abstract][Full Text] [Related]
28. Vascular plant abundance and diversity in an alpine heath under observed and simulated global change. Alatalo JM; Little CJ; Jägerbrand AK; Molau U Sci Rep; 2015 May; 5():10197. PubMed ID: 25950370 [TBL] [Abstract][Full Text] [Related]
29. The structure of bacteria-fungi bipartite networks along elevational gradients in contrasting climates. Zhao W; Soininen J; Hu A; Liu J; Li M; Wang J Mol Ecol; 2024 Aug; 33(15):e17442. PubMed ID: 38953280 [TBL] [Abstract][Full Text] [Related]
30. Drivers of plant diversity, community composition, functional traits, and soil processes along an alpine gradient in the central Chilean Andes. Schroeder L; Robles V; Jara-Arancio P; Lapadat C; Hobbie SE; Arroyo MTK; Cavender-Bares J Ecol Evol; 2024 Feb; 14(2):e10888. PubMed ID: 38343572 [TBL] [Abstract][Full Text] [Related]
31. Species selection under long-term experimental warming and drought explained by climatic distributions. Liu D; Peñuelas J; Ogaya R; Estiarte M; Tielbörger K; Slowik F; Yang X; Bilton MC New Phytol; 2018 Mar; 217(4):1494-1506. PubMed ID: 29205399 [TBL] [Abstract][Full Text] [Related]
32. Widespread Effects of Climate Change on Local Plant Diversity. Suggitt AJ; Lister DG; Thomas CD Curr Biol; 2019 Sep; 29(17):2905-2911.e2. PubMed ID: 31422880 [TBL] [Abstract][Full Text] [Related]
33. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change. Carroll C; Lawler JJ; Roberts DR; Hamann A PLoS One; 2015; 10(10):e0140486. PubMed ID: 26466364 [TBL] [Abstract][Full Text] [Related]
34. Constraints on trait combinations explain climatic drivers of biodiversity: the importance of trait covariance in community assembly. Dwyer JM; Laughlin DC Ecol Lett; 2017 Jul; 20(7):872-882. PubMed ID: 28510261 [TBL] [Abstract][Full Text] [Related]
35. Projected impacts of climate change on regional capacities for global plant species richness. Sommer JH; Kreft H; Kier G; Jetz W; Mutke J; Barthlott W Proc Biol Sci; 2010 Aug; 277(1692):2271-80. PubMed ID: 20335215 [TBL] [Abstract][Full Text] [Related]
36. Divergent responses of plant reproductive strategies to chronic anthropogenic disturbance and aridity in the Caatinga dry forest. Silva JLS; Cruz-Neto O; Rito KF; Arnan X; Leal IR; Peres CA; Tabarelli M; Valentina Lopes A Sci Total Environ; 2020 Feb; 704():135240. PubMed ID: 31812426 [TBL] [Abstract][Full Text] [Related]
37. How many species will Earth lose to climate change? Wiens JJ; Zelinka J Glob Chang Biol; 2024 Jan; 30(1):e17125. PubMed ID: 38273487 [TBL] [Abstract][Full Text] [Related]
38. The coincidence of climatic and species rarity: high risk to small-range species from climate change. Ohlemüller R; Anderson BJ; Araújo MB; Butchart SH; Kudrna O; Ridgely RS; Thomas CD Biol Lett; 2008 Oct; 4(5):568-72. PubMed ID: 18664421 [TBL] [Abstract][Full Text] [Related]
39. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds. Gil M; Ramil F; AgÍs JA Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142 [TBL] [Abstract][Full Text] [Related]
40. Synergistic and antagonistic effects of land use and non-native species on community responses to climate change. Auffret AG; Thomas CD Glob Chang Biol; 2019 Dec; 25(12):4303-4314. PubMed ID: 31400190 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]