These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 31983427)
61. Electrophysiological investigation of adenosine trisphosphate-sensitive potassium channels in the rat substantia nigra pars reticulata. Stanford IM; Lacey MG Neuroscience; 1996 Sep; 74(2):499-509. PubMed ID: 8865200 [TBL] [Abstract][Full Text] [Related]
63. Voltage-activated Ca2+ channels and ionotropic GABA receptors localized at axon terminals of mammalian retinal bipolar cells. Pan ZH Vis Neurosci; 2001; 18(2):279-88. PubMed ID: 11417802 [TBL] [Abstract][Full Text] [Related]
64. Inhibition of GABA release by presynaptic ionotropic GABA receptors in hippocampal CA3. Axmacher N; Draguhn A Neuroreport; 2004 Feb; 15(2):329-34. PubMed ID: 15076763 [TBL] [Abstract][Full Text] [Related]
65. Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata. Garcia M; Floran B; Arias-Montaño JA; Young JM; Aceves J Neuroscience; 1997 Sep; 80(1):241-9. PubMed ID: 9252235 [TBL] [Abstract][Full Text] [Related]
66. Heparin/heparan sulfates bind to and modulate neuronal L-type (Cav1.2) voltage-dependent Ca(2+) channels. Garau G; Magotti P; Heine M; Korotchenko S; Lievens PM; Berezin V; Dityatev A Exp Neurol; 2015 Dec; 274(Pt B):156-65. PubMed ID: 26272754 [TBL] [Abstract][Full Text] [Related]
67. Cannabinoids inhibit excitatory neurotransmission in the substantia nigra pars reticulata. Szabo B; Wallmichrath I; Mathonia P; Pfreundtner C Neuroscience; 2000; 97(1):89-97. PubMed ID: 10771342 [TBL] [Abstract][Full Text] [Related]
68. Neurotensin speeds inhibition of dopamine neurons through temporal modulation of GABA Tschumi CW; Beckstead MJ Neuropharmacology; 2018 Mar; 131():414-423. PubMed ID: 29307543 [TBL] [Abstract][Full Text] [Related]
69. The subcellular localization of GABA(B) receptor subunits in the rat substantia nigra. Boyes J; Bolam JP Eur J Neurosci; 2003 Dec; 18(12):3279-93. PubMed ID: 14686901 [TBL] [Abstract][Full Text] [Related]
70. Differences in Na+ conductance density and Na+ channel functional properties between dopamine and GABA neurons of the rat substantia nigra. Seutin V; Engel D J Neurophysiol; 2010 Jun; 103(6):3099-114. PubMed ID: 20357070 [TBL] [Abstract][Full Text] [Related]
71. Association of CaV1.3 L-type calcium channels with Shank. Zhang H; Maximov A; Fu Y; Xu F; Tang TS; Tkatch T; Surmeier DJ; Bezprozvanny I J Neurosci; 2005 Feb; 25(5):1037-49. PubMed ID: 15689539 [TBL] [Abstract][Full Text] [Related]
72. GABAA receptor activation and the excitability of nerve terminals in the rat posterior pituitary. Zhang SJ; Jackson MB J Physiol; 1995 Mar; 483 ( Pt 3)(Pt 3):583-95. PubMed ID: 7776245 [TBL] [Abstract][Full Text] [Related]
75. Presynaptic GABAA receptors facilitate spontaneous glutamate release from presynaptic terminals on mechanically dissociated rat CA3 pyramidal neurons. Jang IS; Nakamura M; Ito Y; Akaike N Neuroscience; 2006; 138(1):25-35. PubMed ID: 16378694 [TBL] [Abstract][Full Text] [Related]
76. Heterogeneous presynaptic Ca2+ channel types triggering GABA release onto medial preoptic neurons from rat. Haage D; Karlsson U; Johansson S J Physiol; 1998 Feb; 507 ( Pt 1)(Pt 1):77-91. PubMed ID: 9490820 [TBL] [Abstract][Full Text] [Related]
77. Ca2+ release-dependent hyperpolarizations modulate the firing pattern of juvenile GABA neurons in mouse substantia nigra pars reticulata in vitro. Yanovsky Y; Velte S; Misgeld U J Physiol; 2006 Dec; 577(Pt 3):879-90. PubMed ID: 17053035 [TBL] [Abstract][Full Text] [Related]
78. Molecular mimicking of C-terminal phosphorylation tunes the surface dynamics of Ca Folci A; Steinberger A; Lee B; Stanika R; Scheruebel S; Campiglio M; Ramprecht C; Pelzmann B; Hell JW; Obermair GJ; Heine M; Di Biase V J Biol Chem; 2018 Jan; 293(3):1040-1053. PubMed ID: 29180451 [TBL] [Abstract][Full Text] [Related]
79. Regulation of NLGN3 and the Synaptic Rho-GEF Signaling Pathway by CDK5. Jeong J; Han W; Hong E; Pandey S; Li Y; Lu W; Roche KW J Neurosci; 2023 Nov; 43(44):7264-7275. PubMed ID: 37699715 [TBL] [Abstract][Full Text] [Related]
80. CDK5 interacts with Slo and affects its surface expression and kinetics through direct phosphorylation. Bai JP; Surguchev A; Joshi P; Gross L; Navaratnam D Am J Physiol Cell Physiol; 2012 Mar; 302(5):C766-80. PubMed ID: 22094329 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]