BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31983435)

  • 1. CaMKIIα phosphorylation of Shank3 modulates ABI1-Shank3 interaction.
    Perfitt TL; Stauffer PE; Spiess KL; Colbran RJ
    Biochem Biophys Res Commun; 2020 Mar; 524(1):262-267. PubMed ID: 31983435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-dependent modulation of the interaction between CaMKIIα and Abi1 and its involvement in spine maturation.
    Park E; Chi S; Park D
    J Neurosci; 2012 Sep; 32(38):13177-88. PubMed ID: 22993434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal L-Type Calcium Channel Signaling to the Nucleus Requires a Novel CaMKIIα-Shank3 Interaction.
    Perfitt TL; Wang X; Dickerson MT; Stephenson JR; Nakagawa T; Jacobson DA; Colbran RJ
    J Neurosci; 2020 Mar; 40(10):2000-2014. PubMed ID: 32019829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CaMKIIα-driven, phosphatase-checked postsynaptic plasticity via phase separation.
    Cai Q; Zeng M; Wu X; Wu H; Zhan Y; Tian R; Zhang M
    Cell Res; 2021 Jan; 31(1):37-51. PubMed ID: 33235361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative proteomics analysis of CaMKII phosphorylation and the CaMKII interactome in the mouse forebrain.
    Baucum AJ; Shonesy BC; Rose KL; Colbran RJ
    ACS Chem Neurosci; 2015 Apr; 6(4):615-31. PubMed ID: 25650780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CaMKII Phosphorylation Regulates Synaptic Enrichment of Shank3.
    Jeong J; Li Y; Roche KW
    eNeuro; 2021; 8(3):. PubMed ID: 33568460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of neuronal PKA signaling through AKAP targeting dynamics.
    Dell'Acqua ML; Smith KE; Gorski JA; Horne EA; Gibson ES; Gomez LL
    Eur J Cell Biol; 2006 Jul; 85(7):627-33. PubMed ID: 16504338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An autism-linked missense mutation in SHANK3 reveals the modularity of Shank3 function.
    Wang L; Pang K; Han K; Adamski CJ; Wang W; He L; Lai JK; Bondar VV; Duman JG; Richman R; Tolias KF; Barth P; Palzkill T; Liu Z; Holder JL; Zoghbi HY
    Mol Psychiatry; 2020 Oct; 25(10):2534-2555. PubMed ID: 30610205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin.
    Gomez LL; Alam S; Smith KE; Horne E; Dell'Acqua ML
    J Neurosci; 2002 Aug; 22(16):7027-44. PubMed ID: 12177200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Human
    Stephenson JR; Wang X; Perfitt TL; Parrish WP; Shonesy BC; Marks CR; Mortlock DP; Nakagawa T; Sutcliffe JS; Colbran RJ
    J Neurosci; 2017 Feb; 37(8):2216-2233. PubMed ID: 28130356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, densin-180, and alpha-actinin-2.
    Robison AJ; Bass MA; Jiao Y; MacMillan LB; Carmody LC; Bartlett RK; Colbran RJ
    J Biol Chem; 2005 Oct; 280(42):35329-36. PubMed ID: 16120608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hippocampal levels of ChAT, PKA, phospho-PKA and phospho-CaMKIIα but not CaMKIIα positively correlate with spatial learning skills in rats.
    Gökçek-Saraç Ç; Adalı O; Jakubowska-Doğru E
    Neurosci Lett; 2013 Jun; 545():112-6. PubMed ID: 23643989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CaMKII-mediated phosphorylation of GluN2B regulates recombinant NMDA receptor currents in a chloride-dependent manner.
    Tavalin SJ; Colbran RJ
    Mol Cell Neurosci; 2017 Mar; 79():45-52. PubMed ID: 27998718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic CaMKIIα modulates dopamine D3 receptor activation in striatonigral terminals of the rat brain in a Ca²⁺ dependent manner.
    Avalos-Fuentes A; Loya-López S; Flores-Pérez A; Recillas-Morales S; Cortés H; Paz-Bermúdez F; Aceves J; Erlij D; Florán B
    Neuropharmacology; 2013 Aug; 71():273-81. PubMed ID: 23602989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activated CaMKII
    Marks CR; Shonesy BC; Wang X; Stephenson JR; Niswender CM; Colbran RJ
    Mol Pharmacol; 2018 Dec; 94(6):1352-1362. PubMed ID: 30282777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shank3 Is Part of a Zinc-Sensitive Signaling System That Regulates Excitatory Synaptic Strength.
    Arons MH; Lee K; Thynne CJ; Kim SA; Schob C; Kindler S; Montgomery JM; Garner CC
    J Neurosci; 2016 Aug; 36(35):9124-34. PubMed ID: 27581454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental stage-dependent regulation of spine formation by calcium-calmodulin-dependent protein kinase IIα and Rap1.
    Cornelia Koeberle S; Tanaka S; Kuriu T; Iwasaki H; Koeberle A; Schulz A; Helbing DL; Yamagata Y; Morrison H; Okabe S
    Sci Rep; 2017 Oct; 7(1):13409. PubMed ID: 29042611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand.
    Chung HJ; Huang YH; Lau LF; Huganir RL
    J Neurosci; 2004 Nov; 24(45):10248-59. PubMed ID: 15537897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ULK2 Ser 1027 Phosphorylation by PKA Regulates Its Nuclear Localization Occurring through Karyopherin Beta 2 Recognition of a PY-NLS Motif.
    Shin SH; Lee EJ; Chun J; Hyun S; Kang SS
    PLoS One; 2015; 10(6):e0127784. PubMed ID: 26052940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CASK phosphorylation by PKA regulates the protein-protein interactions of CASK and expression of the NMDAR2b gene.
    Huang TN; Chang HP; Hsueh YP
    J Neurochem; 2010 Mar; 112(6):1562-73. PubMed ID: 20067577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.