These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 319837)

  • 21. Effect of a low-molecular-weight DNA binding protein, H1 factor, on the in vitro transcription of the lactose operon in Escherichia coli.
    Crepin M; Cukier-Kahn R; Gros F
    Proc Natl Acad Sci U S A; 1975 Jan; 72(1):333-7. PubMed ID: 164021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMR studies of the binding of an inducer and an anti-inducer to the lac repressor.
    Matthews HR; Thielmann HW; Matthews KS; Jardetzky O
    Ann N Y Acad Sci; 1973 Dec; 222():226-9. PubMed ID: 4522430
    [No Abstract]   [Full Text] [Related]  

  • 23. Protein NMR resonance assignment by isotropic mixing experiments on random fractionally deuterated samples.
    LeMaster DM
    FEBS Lett; 1988 Jun; 233(2):326-30. PubMed ID: 3289970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonspecific DNA binding of genome-regulating proteins as a biological control mechanism: measurement of DNA-bound Escherichia coli lac repressor in vivo.
    Kao-Huang Y; Revzin A; Butler AP; O'Conner P; Noble DW; von Hippel PH
    Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4228-32. PubMed ID: 412185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of fully deuterated micelles for conformational studies of membrane proteins by high resolution 1H nuclear magnetic resonance.
    Brown LR
    Biochim Biophys Acta; 1979 Oct; 557(1):135-48. PubMed ID: 549631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nuclear magnetic resonance studies of the structure and binding sites of enzymes. XI. Characterization of selectively deuterated analogs of staphylococcal nuclease.
    Putter I; Markley JL; Jardetzky O
    Proc Natl Acad Sci U S A; 1970 Feb; 65(2):395-401. PubMed ID: 4984238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modification of tyrosine residues of the lactose repressor protein.
    Alexander ME; Burgum AA; Noall RA; Shaw MD; Matthews KS
    Biochim Biophys Acta; 1977 Aug; 493(2):367-79. PubMed ID: 329889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The functional repressor parts of a tetrameric lac repressor-beta-galactosidase chimaera are organized as dimers.
    Kania J; Brown DT
    Proc Natl Acad Sci U S A; 1976 Oct; 73(10):3529-33. PubMed ID: 790390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Secondary structure of the lac repressor DNA-binding domain by two-dimensional 1H nuclear magnetic resonance in solution.
    Zuiderweg ER; Kaptein R; Wüthrich K
    Proc Natl Acad Sci U S A; 1983 Oct; 80(19):5837-41. PubMed ID: 6351066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteins from the prokaryotic nucleoid: biochemical and 1H NMR studies on three bacterial histone-like proteins.
    Lammi M; Paci M; Pon CL; Losso MA; Miano A; Pawlik RT; Gianfranceschi GL; Gualerzi CO
    Adv Exp Med Biol; 1984; 179():467-77. PubMed ID: 6395665
    [No Abstract]   [Full Text] [Related]  

  • 31. OmpF changes and the complexity of Escherichia coli adaptation to prolonged lactose limitation.
    Zhang E; Ferenci T
    FEMS Microbiol Lett; 1999 Jul; 176(2):395-401. PubMed ID: 10427722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Escherichia coli lactose repressor: isolation of two different homogeneous headpieces and the existence of a hinge region between residues 50 and 60 in the repressor molecule.
    Geisler N; Weber K
    FEBS Lett; 1978 Mar; 87(2):215-8. PubMed ID: 344067
    [No Abstract]   [Full Text] [Related]  

  • 33. Genetic assignment of resonances in the NMR spectrum of a protein: lac repressor.
    Jarema MA; Lu P; Miller JH
    Proc Natl Acad Sci U S A; 1981 May; 78(5):2707-11. PubMed ID: 7019910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-specific DNA binding of genome regulating proteins as a biological control mechanism: I. The lac operon: equilibrium aspects.
    von Hippel PH; Revzin A; Gross CA; Wang AC
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4808-12. PubMed ID: 4612528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Altered sequences changing the operator-binding properties of the Lac repressor: colinearity of the repressor protein with the i-gene map.
    Weber K; Platt T; Ganem D; Miller JH
    Proc Natl Acad Sci U S A; 1972 Dec; 69(12):3624-8. PubMed ID: 4566452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of valine/leucine/isoleucine and threonine/alanine/glycine proton-spin systems of Escherichia coli adenylate kinase by selective deuteration and selective protonation.
    Bock-Möbius I; Brune M; Wittinghofer A; Zimmermann H; Leberman R; Dauvergne MT; Zimmermann S; Brandmeier B; Rösch P
    Biochem J; 1991 Jan; 273(Pt 2)(Pt 2):311-6. PubMed ID: 1991031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bistability and Nonmonotonic Induction of the lac Operon in the Natural Lactose Uptake System.
    Zander D; Samaga D; Straube R; Bettenbrock K
    Biophys J; 2017 May; 112(9):1984-1996. PubMed ID: 28494968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-dimensional 1H-nmr studies on the lac repressor DNA binding domain: further resonance assignments and identification of nuclear Overhauser enhancements.
    Zuiderweg ER; Scheek RM; Kaptein R
    Biopolymers; 1985 Dec; 24(12):2257-77. PubMed ID: 3912012
    [No Abstract]   [Full Text] [Related]  

  • 39. The location of the repressor binding sites in the lac operon.
    Reznikoff WS; Winter RB; Hurley CK
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2314-8. PubMed ID: 4601586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultraviolet difference spectra of the lactose repressor protein. II. Trypsin core protein.
    Matthews KS
    Biochim Biophys Acta; 1974 Aug; 359(2):334-40. PubMed ID: 4605413
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.