These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31983773)

  • 1. Precipitation within localised chromium-enriched regions in a Type 316H austenitic stainless steel.
    Warren AD; Griffiths IJ; Flewitt PEJ
    J Mater Sci; 2018; 53(8):6183-6197. PubMed ID: 31983773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steel.
    Barcellini C; Dumbill S; Jimenez-Melero E
    J Microsc; 2019 Apr; 274(1):3-12. PubMed ID: 30561019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved method to identify grain boundary creep cavitation in 316H austenitic stainless steel.
    Chen B; Flewitt PE; Smith DJ; Jones CP
    Ultramicroscopy; 2011 Apr; 111(5):309-13. PubMed ID: 21396524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nd: YAG Pulsed Laser Dissimilar Welding of UNS S32750 Duplex with 316L Austenitic Stainless Steel.
    Silva Leite CG; da Cruz Junior EJ; Lago M; Zambon A; Calliari I; Ventrella VA
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31505738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Service on Microstructure and Mechanical Properties of HR3C Heat-Resistant Austenitic Stainless Steel.
    Golański G; Zieliński A; Sroka M; Słania J
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the thermal aging of δ-ferrite in austenitic stainless steel welds by electrochemical analysis.
    Obulan Subramanian G; Kong BS; Lee HJ; Jang C
    Sci Rep; 2018 Oct; 8(1):15091. PubMed ID: 30305663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precipitation Evolution in the Austenitic Heat-Resistant Steel HR3C upon Creep at 700 °C and 750 °C.
    Xu L; He Y; Kang Y; Jung JS; Shin K
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grain Size Effect on the Hot Ductility of High-Nitrogen Austenitic Stainless Steel in the Presence of Precipitates.
    Wang Z; Wang Y; Wang C
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ SEM observation of grain growth in the austenitic region of carbon steel using thermal etching.
    Heard R; Dragnevski KI; Siviour CR
    J Microsc; 2020 Sep; 279(3):249-255. PubMed ID: 32259284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precipitate Evolution in 22Cr25NiWCuCo(Nb) Austenitic Heat-Resistant Stainless Steel during Heat Treatment at 1200 °C.
    Yang SM; Wu JL; Pan YT; Lin DY
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33652951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strengthening Mechanism and Carbide Precipitation Behavior of Nb-Mo Microalloy Medium Mn Steel.
    Liu C; Xiong F; Wang Y; Cao Y; Liu X; Xue Z; Peng Q; Peng L
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creep Resistance of S304H Austenitic Steel Processed by High-Pressure Sliding.
    Kral P; Dvorak J; Sklenicka V; Horita Z; Takizawa Y; Tang Y; Kral L; Kvapilova M; Roupcová P; Horvath J
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Replacing Ni with Mn on the Microstructure and Properties of Al
    Chen G; Du S; Zhou Z
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Microstructure and Mechanical Properties of Multi-Strand, Composite Welding-Wire Welded Joints of High Nitrogen Austenitic Stainless Steel.
    Li J; Li H; Liang Y; Liu P; Yang L
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31514393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and Properties of Porous High-N Ni-Free Austenitic Stainless Steel Fabricated by Powder Metallurgical Route.
    Hu L; Ngai T; Peng H; Li L; Zhou F; Peng Z
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29932106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Study of Precipitates' Effect on Grain Deformation Behavior and Mechanical Properties of S31254 Super Austenitic Stainless Steel.
    Ma J; Tan H; Dong N; Gao J; Wang P; Wang Z; Han P
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface segregation behavior in thermal aged austenitic precipitation strengthened stainless steel.
    Li H; Song H; Liu W; Xia S; Zhou B; Su C; Ding W
    Ultramicroscopy; 2015 Dec; 159 Pt 2():255-64. PubMed ID: 26142697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel.
    Rahimi S; Engelberg DL; Duff JA; Marrow TJ
    J Microsc; 2009 Mar; 233(3):423-31. PubMed ID: 19250463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Reverse-phase Transformation Annealing Process on Microstructure and Mechanical Properties of Medium Manganese Steel.
    Zhao Y; Fan L; Lu B
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal stability of hierarchical microstructural features in additively manufactured stainless steel.
    Funch CV; Grumsen FB; da Silva Fanta AB; Christiansen TL; Somers MAJ
    Heliyon; 2023 Jun; 9(6):e16555. PubMed ID: 37274708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.