These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31983863)

  • 1. Salt Dependence of the Tribological Properties of a Surface-Grafted Weak Polycation in Aqueous Solution.
    Raftari M; Zhang ZJ; Carter SR; Leggett GJ; Geoghegan M
    Tribol Lett; 2018; 66(1):11. PubMed ID: 31983863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frictional properties of a polycationic brush.
    Raftari M; Zhang Z; Carter SR; Leggett GJ; Geoghegan M
    Soft Matter; 2014 Apr; 10(16):2759-66. PubMed ID: 24668347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale contact mechanics of biocompatible polyzwitterionic brushes.
    Zhang Z; Morse AJ; Armes SP; Lewis AL; Geoghegan M; Leggett GJ
    Langmuir; 2013 Aug; 29(34):10684-92. PubMed ID: 23855771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational Dynamics and Responsiveness of Weak and Strong Polyelectrolyte Brushes: Atomistic Simulations of Poly(dimethyl aminoethyl methacrylate) and Poly(2-(methacryloyloxy)ethyl trimethylammonium chloride).
    Santos DES; Li D; Ramstedt M; Gautrot JE; Soares TA
    Langmuir; 2019 Apr; 35(14):5037-5049. PubMed ID: 30869897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Salt Concentration on the pH Responses of Strong and Weak Polyelectrolyte Brushes.
    Zhang J; Kou R; Liu G
    Langmuir; 2017 Jul; 33(27):6838-6845. PubMed ID: 28628336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanotribological properties of nanostructured poly(cysteine methacrylate) brushes.
    Al-Jaf O; Alswieleh A; Armes SP; Leggett GJ
    Soft Matter; 2017 Mar; 13(10):2075-2084. PubMed ID: 28217790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tribological properties of hydrophilic polymer brushes under wet conditions.
    Kobayashi M; Takahara A
    Chem Rec; 2010 Aug; 10(4):208-16. PubMed ID: 20533448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Friction and adhesion control between adsorbed layers of polyelectrolyte brush-grafted nanoparticles via pH-triggered bridging interactions.
    Riley JK; Matyjaszewski K; Tilton RD
    J Colloid Interface Sci; 2018 Sep; 526():114-123. PubMed ID: 29723792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential Adsorption of Nanoparticulate Polymer Brushes as a Strategy To Control Adhesion and Friction.
    Riley JK; Tilton RD
    Langmuir; 2016 Nov; 32(44):11440-11447. PubMed ID: 27734683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutron reflectivity study of the swollen structure of polyzwitterion and polyeletrolyte brushes in aqueous solution.
    Kobayashi M; Ishihara K; Takahara A
    J Biomater Sci Polym Ed; 2014; 25(14-15):1673-86. PubMed ID: 25178564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoresponsive PDMAEMA Brushes: Effect of Gold Nanoparticle Deposition.
    Yenice Z; Schön S; Bildirir H; Genzer J; von Klitzing R
    J Phys Chem B; 2015 Aug; 119(32):10348-58. PubMed ID: 26132296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties.
    Yang J; Chen H; Xiao S; Shen M; Chen F; Fan P; Zhong M; Zheng J
    Langmuir; 2015 Aug; 31(33):9125-33. PubMed ID: 26245712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switching of friction by binary polymer brushes.
    Kumar Vyas M; Schneider K; Nandan B; Stamm M
    Soft Matter; 2008 Apr; 4(5):1024-1032. PubMed ID: 32907135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switchable friction using contacts of stimulus-responsive and nonresponding swollen polymer brushes.
    de Beer S
    Langmuir; 2014 Jul; 30(27):8085-90. PubMed ID: 24954240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Dependence of Salt-Responsive Polyzwitterionic Brushes with an Anti-Polyelectrolyte Effect.
    Xiao S; Zhang Y; Shen M; Chen F; Fan P; Zhong M; Ren B; Yang J; Zheng J
    Langmuir; 2018 Jan; 34(1):97-105. PubMed ID: 29232140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical switching of conformation of random polyampholyte brushes grafted onto polypyrrole.
    Pei Y; Travas-Sedjic J; Williams DE
    Langmuir; 2012 Sep; 28(37):13241-8. PubMed ID: 22924861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions.
    Kobayashi M; Terada M; Takahara A
    Faraday Discuss; 2012; 156():403-12; discussion 413-34. PubMed ID: 23285641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of adhesion and friction properties on a nanoparticle gradient surface: transition from JKR to DMT contact mechanics.
    Ramakrishna SN; Nalam PC; Clasohm LY; Spencer ND
    Langmuir; 2013 Jan; 29(1):175-82. PubMed ID: 23215537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anion-specific effects on the behavior of pH-sensitive polybasic brushes.
    Willott JD; Murdoch TJ; Humphreys BA; Edmondson S; Wanless EJ; Webber GB
    Langmuir; 2015 Mar; 31(12):3707-17. PubMed ID: 25768282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.