BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 31983885)

  • 1. A Review of Electrical Impedance Tomography in Lung Applications: Theory and Algorithms for Absolute Images.
    de Castro Martins T; Sato AK; de Moura FS; de Camargo EDLB; Silva OL; Santos TBR; Zhao Z; Möeller K; Amato MBP; Mueller JL; Lima RG; de Sales Guerra Tsuzuki M
    Annu Rev Control; 2019; 48():442-471. PubMed ID: 31983885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved resolution of D-bar images of ventilation using a Schur complement property and an anatomical atlas.
    Santos TBR; Nakanishi RM; de Camargo EDLB; Amato MBP; Kaipio JP; Lima RG; Mueller JL
    Med Phys; 2022 Jul; 49(7):4653-4670. PubMed ID: 35411573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust computation in 2D absolute EIT (a-EIT) using D-bar methods with the 'exp' approximation.
    Hamilton SJ; Mueller JL; Santos TR
    Physiol Meas; 2018 Jun; 39(6):064005. PubMed ID: 29846182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GREIT: a unified approach to 2D linear EIT reconstruction of lung images.
    Adler A; Arnold JH; Bayford R; Borsic A; Brown B; Dixon P; Faes TJ; Frerichs I; Gagnon H; Gärber Y; Grychtol B; Hahn G; Lionheart WR; Malik A; Patterson RP; Stocks J; Tizzard A; Weiler N; Wolf GK
    Physiol Meas; 2009 Jun; 30(6):S35-55. PubMed ID: 19491438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realistic forward and inverse model mesh generation for rapid three-dimensional thoracic electrical impedance imaging.
    Zifan A; Liatsis P; Almarzouqi H
    Comput Biol Med; 2019 Apr; 107():97-108. PubMed ID: 30798220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of the Kalman filter in the automated segmentation of EIT lung images.
    Zifan A; Liatsis P; Chapman BE
    Physiol Meas; 2013 Jun; 34(6):671-94. PubMed ID: 23719169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choice of reconstructed tissue properties affects interpretation of lung EIT images.
    Grychtol B; Adler A
    Physiol Meas; 2014 Jun; 35(6):1035-50. PubMed ID: 24844670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FEM electrode refinement for electrical impedance tomography.
    Grychtol B; Adler A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6429-32. PubMed ID: 24111213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accounting for hardware imperfections in EIT image reconstruction algorithms.
    Hartinger AE; Gagnon H; Guardo R
    Physiol Meas; 2007 Jul; 28(7):S13-27. PubMed ID: 17664631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical Impedance Tomography: Tissue Properties to Image Measures.
    Adler A; Boyle A
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2494-2504. PubMed ID: 28715324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast parallel solver for the forward problem in electrical impedance tomography.
    Jehl M; Dedner A; Betcke T; Aristovich K; Klöfkorn R; Holder D
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):126-37. PubMed ID: 25069109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of performance and sensitivity of 2D and 3D image reconstruction in EIT using EFG forward model.
    Hadinia M; Jafari R
    Biomed Phys Eng Express; 2022 Mar; 8(3):. PubMed ID: 35263732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the GRID to improve the computation speed of electrical impedance tomography (EIT) reconstruction algorithms.
    Fritschy J; Horesh L; Holder DS; Bayford RH
    Physiol Meas; 2005 Apr; 26(2):S209-15. PubMed ID: 15798234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human CT Measurements of Structure/Electrode Position Changes During Respiration with Electrical Impedance Tomography.
    Zhang J; Qin L; Allen T; Patterson RP
    Open Biomed Eng J; 2013; 7():109-15. PubMed ID: 24339836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Kalman filter approach to track fast impedance changes in electrical impedance tomography.
    Vauhkonen M; Karjalainen PA; Kaipio JP
    IEEE Trans Biomed Eng; 1998 Apr; 45(4):486-93. PubMed ID: 9556965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The boundary element method in the forward and inverse problem of electrical impedance tomography.
    de Munck JC; Faes TJ; Heethaar RM
    IEEE Trans Biomed Eng; 2000 Jun; 47(6):792-800. PubMed ID: 10833854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy and reliability of noninvasive stroke volume monitoring via ECG-gated 3D electrical impedance tomography in healthy volunteers.
    Braun F; Proença M; Adler A; Riedel T; Thiran JP; Solà J
    PLoS One; 2018; 13(1):e0191870. PubMed ID: 29373611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation.
    Wagenaar J; Adler A
    Physiol Meas; 2016 Jun; 37(6):922-37. PubMed ID: 27203154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging.
    Woo EJ; Seo JK
    Physiol Meas; 2008 Oct; 29(10):R1-26. PubMed ID: 18799834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.