These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31984113)

  • 1. Nanoparticle-mediated Impact on Growth and Fatty Acid Methyl Ester Composition in the Cyanobacterium
    Tabatabai B; Fathabad SG; Bonyi E; Rajini S; Aslan K; Sitther V
    Bioenergy Res; 2019 Jun; 12():409-418. PubMed ID: 31984113
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Tabatabai B; Chen H; Lu J; Giwa-Otusajo J; McKenna AM; Shrivastava AK; Sitther V
    Bioenergy Res; 2018 Sep; 11(3):528-537. PubMed ID: 30416644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Zero-Valent Iron Nanoparticles on
    Fathabad SG; Tabatabai B; Walker D; Chen H; Lu J; Aslan K; Uddin J; Ghann W; Sitther V
    ACS Omega; 2020 Jun; 5(21):12166-12173. PubMed ID: 32548398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmenting Fremyella diplosiphon Cellular Lipid Content and Unsaturated Fatty Acid Methyl Esters Via Sterol Desaturase Gene Overexpression.
    Gharaie Fathabad S; Arumanayagam AS; Tabatabai B; Chen H; Lu J; Sitther V
    Appl Biochem Biotechnol; 2019 Dec; 189(4):1127-1140. PubMed ID: 31168708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of hlyB and mdh genes confers halotolerance in Fremyella diplosiphon, a freshwater cyanobacterium.
    Tabatabai B; Arumanayagam AS; Enitan O; Mani A; Natarajan SS; Sitther V
    Enzyme Microb Technol; 2017 Aug; 103():12-17. PubMed ID: 28554380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct salt-dependent effects impair Fremyella diplosiphon pigmentation and cellular shape.
    Singh SP; Montgomery BL
    Plant Signal Behav; 2013 Jul; 8(7):e24713. PubMed ID: 23656879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a Halotolerant Mutant via In Vitro Mutagenesis in the Cyanobacterium Fremyella diplosiphon.
    Tabatabai B; Arumanayagam AS; Enitan O; Mani A; Natarajan SS; Sitther V
    Curr Microbiol; 2017 Jan; 74(1):77-83. PubMed ID: 27844126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting the autofluorescent properties of photosynthetic pigments for analysis of pigmentation and morphology in live Fremyella diplosiphon cells.
    Bordowitz JR; Montgomery BL
    Sensors (Basel); 2010; 10(7):6969-79. PubMed ID: 22163584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zero-Valent Iron Nanoparticles Induce Reactive Oxygen Species in the Cyanobacterium,
    Gichuki SM; Yalcin YS; Wyatt L; Ghann W; Uddin J; Kang H; Sitther V
    ACS Omega; 2021 Dec; 6(48):32730-32738. PubMed ID: 34901621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salinity impacts photosynthetic pigmentation and cellular morphology changes by distinct mechanisms in Fremyella diplosiphon.
    Singh SP; Montgomery BL
    Biochem Biophys Res Commun; 2013 Mar; 433(1):84-9. PubMed ID: 23454384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CpcF-dependent regulation of pigmentation and development in Fremyella diplosiphon.
    Whitaker MJ; Bordowitz JR; Montgomery BL
    Biochem Biophys Res Commun; 2009 Nov; 389(4):602-6. PubMed ID: 19748483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmentation of the Photoreactivation Gene in
    Gichuki SM; Arumanayagam AS; Tabatabai B; Yalcin YS; Wyatt L; Sitther V
    ACS Omega; 2022 Oct; 7(39):35092-35101. PubMed ID: 36211070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses to iron limitation are impacted by light quality and regulated by RcaE in the chromatically acclimating cyanobacterium Fremyella diplosiphon.
    Pattanaik B; Busch AWU; Hu P; Chen J; Montgomery BL
    Microbiology (Reading); 2014 May; 160(Pt 5):992-1005. PubMed ID: 24623652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotic-Induced Changes in Pigment Accumulation, Photosystem II, and Membrane Permeability in a Model Cyanobacterium.
    Yalcin YS; Aydin BN; Sayadujjhara M; Sitther V
    Front Microbiol; 2022; 13():930357. PubMed ID: 35814666
    [No Abstract]   [Full Text] [Related]  

  • 15. Construction of shuttle plasmids which can be efficiently mobilized from Escherichia coli into the chromatically adapting cyanobacterium, Fremyella diplosiphon.
    Cobley JG; Zerweck E; Reyes R; Mody A; Seludo-Unson JR; Jaeger H; Weerasuriya S; Navankasattusas S
    Plasmid; 1993 Sep; 30(2):90-105. PubMed ID: 8234495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481.
    Shui J; Saunders E; Needleman R; Nappi M; Cooper J; Hall L; Kehoe D; Stowe-Evans E
    Plant Cell Physiol; 2009 Aug; 50(8):1507-21. PubMed ID: 19561333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of phycoerythrin synthesis and cellular morphology in Fremyella diplosiphon green mutants.
    Pattanaik B; Whitaker MJ; Montgomery BL
    Biochem Biophys Res Commun; 2011 Sep; 413(2):182-8. PubMed ID: 21888899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of BolA abundance mediates morphogenesis in Fremyella diplosiphon.
    Singh SP; Montgomery BL
    Front Microbiol; 2015; 6():1215. PubMed ID: 26594203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan-Rich Sensory Protein/Translocator Protein (TSPO) from Cyanobacterium Fremyella diplosiphon Binds a Broad Range of Functionally Relevant Tetrapyrroles.
    Busch AW; WareJoncas Z; Montgomery BL
    Biochemistry; 2017 Jan; 56(1):73-84. PubMed ID: 27990801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Independence and interdependence of the photoregulation of pigmentation and development in Fremyella diplosiphon.
    Bordowitz JR; Whitaker MJ; Montgomery BL
    Commun Integr Biol; 2010 Mar; 3(2):151-3. PubMed ID: 20585508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.