BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 31984131)

  • 41. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes.
    Shafin K; Pesout T; Lorig-Roach R; Haukness M; Olsen HE; Bosworth C; Armstrong J; Tigyi K; Maurer N; Koren S; Sedlazeck FJ; Marschall T; Mayes S; Costa V; Zook JM; Liu KJ; Kilburn D; Sorensen M; Munson KM; Vollger MR; Monlong J; Garrison E; Eichler EE; Salama S; Haussler D; Green RE; Akeson M; Phillippy A; Miga KH; Carnevali P; Jain M; Paten B
    Nat Biotechnol; 2020 Sep; 38(9):1044-1053. PubMed ID: 32686750
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluating the accuracy of Listeria monocytogenes assemblies from quasimetagenomic samples using long and short reads.
    Commichaux S; Javkar K; Ramachandran P; Nagarajan N; Bertrand D; Chen Y; Reed E; Gonzalez-Escalona N; Strain E; Rand H; Pop M; Ottesen A
    BMC Genomics; 2021 May; 22(1):389. PubMed ID: 34039264
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The long and short of it: benchmarking viromics using Illumina, Nanopore and PacBio sequencing technologies.
    Cook R; Brown N; Rihtman B; Michniewski S; Redgwell T; Clokie M; Stekel DJ; Chen Y; Scanlan DJ; Hobman JL; Nelson A; Jones MA; Smith D; Millard A
    Microb Genom; 2024 Feb; 10(2):. PubMed ID: 38376377
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing.
    Goldstein S; Beka L; Graf J; Klassen JL
    BMC Genomics; 2019 Jan; 20(1):23. PubMed ID: 30626323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Benchmarking hybrid assembly approaches for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing.
    Chen Z; Erickson DL; Meng J
    BMC Genomics; 2020 Sep; 21(1):631. PubMed ID: 32928108
    [TBL] [Abstract][Full Text] [Related]  

  • 46. slag: A program for seeded local assembly of genes in complex genomes.
    Crane CF; Nemacheck JA; Subramanyam S; Williams CE; Goodwin SB
    Mol Ecol Resour; 2022 Jul; 22(5):1999-2017. PubMed ID: 34995394
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assembly of chloroplast genomes with long- and short-read data: a comparison of approaches using Eucalyptus pauciflora as a test case.
    Wang W; Schalamun M; Morales-Suarez A; Kainer D; Schwessinger B; Lanfear R
    BMC Genomics; 2018 Dec; 19(1):977. PubMed ID: 30594129
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improved assembly of noisy long reads by k-mer validation.
    Carvalho AB; Dupim EG; Goldstein G
    Genome Res; 2016 Dec; 26(12):1710-1720. PubMed ID: 27831497
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NextPolish: a fast and efficient genome polishing tool for long-read assembly.
    Hu J; Fan J; Sun Z; Liu S
    Bioinformatics; 2020 Apr; 36(7):2253-2255. PubMed ID: 31778144
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads.
    Wick RR; Judd LM; Gorrie CL; Holt KE
    PLoS Comput Biol; 2017 Jun; 13(6):e1005595. PubMed ID: 28594827
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fast Short Read De-Novo Assembly Using Overlap-Layout-Consensus Approach.
    Bayat A; Deshpande NP; Wilkins MR; Parameswaran S
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):334-338. PubMed ID: 30307874
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Completion of draft bacterial genomes by long-read sequencing of synthetic genomic pools.
    Derakhshani H; Bernier SP; Marko VA; Surette MG
    BMC Genomics; 2020 Jul; 21(1):519. PubMed ID: 32727443
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Resolving plasmid structures in
    George S; Pankhurst L; Hubbard A; Votintseva A; Stoesser N; Sheppard AE; Mathers A; Norris R; Navickaite I; Eaton C; Iqbal Z; Crook DW; Phan HTT
    Microb Genom; 2017 Aug; 3(8):e000118. PubMed ID: 29026658
    [TBL] [Abstract][Full Text] [Related]  

  • 54. De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms.
    Giordano F; Aigrain L; Quail MA; Coupland P; Bonfield JK; Davies RM; Tischler G; Jackson DK; Keane TM; Li J; Yue JX; Liti G; Durbin R; Ning Z
    Sci Rep; 2017 Jun; 7(1):3935. PubMed ID: 28638050
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ONT-Based Alternative Assemblies Impact on the Annotations of Unique versus Repetitive Features in the Genome of a Romanian Strain of
    Bologa AM; Stoica I; Ratiu AC; Constantin ND; Ecovoiu AA
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499217
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assembly of long, error-prone reads using repeat graphs.
    Kolmogorov M; Yuan J; Lin Y; Pevzner PA
    Nat Biotechnol; 2019 May; 37(5):540-546. PubMed ID: 30936562
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Outcome of Different Sequencing and Assembly Approaches on the Detection of Plasmids and Localization of Antimicrobial Resistance Genes in Commensal
    Juraschek K; Borowiak M; Tausch SH; Malorny B; Käsbohrer A; Otani S; Schwarz S; Meemken D; Deneke C; Hammerl JA
    Microorganisms; 2021 Mar; 9(3):. PubMed ID: 33799479
    [TBL] [Abstract][Full Text] [Related]  

  • 58. HISEA: HIerarchical SEed Aligner for PacBio data.
    Khiste N; Ilie L
    BMC Bioinformatics; 2017 Dec; 18(1):564. PubMed ID: 29258419
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of long- and short-read metagenomic assembly for low-abundance species and resistance genes.
    Yorki S; Shea T; Cuomo CA; Walker BJ; LaRocque RC; Manson AL; Earl AM; Worby CJ
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36804804
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of De Novo Assembly Strategies for Bacterial Genomes.
    Zhang P; Jiang D; Wang Y; Yao X; Luo Y; Yang Z
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.