These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 31984192)

  • 1. Combination of coarse-grained molecular dynamics simulations and small-angle X-ray scattering experiments.
    Ekimoto T; Kokabu Y; Oroguchi T; Ikeguchi M
    Biophys Physicobiol; 2019; 16():377-390. PubMed ID: 31984192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data.
    Ekimoto T; Ikeguchi M
    Adv Exp Med Biol; 2018; 1105():237-258. PubMed ID: 30617833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate optimization of amino acid form factors for computing small-angle X-ray scattering intensity of atomistic protein structures.
    Tong D; Yang S; Lu L
    J Appl Crystallogr; 2016 Aug; 49(Pt 4):1148-1161. PubMed ID: 28074088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined Small-Angle X-ray and Neutron Scattering Restraints in Molecular Dynamics Simulations.
    Chen PC; Shevchuk R; Strnad FM; Lorenz C; Karge L; Gilles R; Stadler AM; Hennig J; Hub JS
    J Chem Theory Comput; 2019 Aug; 15(8):4687-4698. PubMed ID: 31251056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Conformationally Flexible Proteins With X-ray Scattering and Molecular Simulations.
    Powers KT; Gildenberg MS; Washington MT
    Comput Struct Biotechnol J; 2019; 17():570-578. PubMed ID: 31073392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-scale ensemble modeling of modular proteins with intrinsically disordered linker regions: application to p53.
    Terakawa T; Higo J; Takada S
    Biophys J; 2014 Aug; 107(3):721-729. PubMed ID: 25099811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of Protein Structural Ensembles by Hybrid-Resolution SAXS Restrained Molecular Dynamics.
    Paissoni C; Jussupow A; Camilloni C
    J Chem Theory Comput; 2020 Apr; 16(4):2825-2834. PubMed ID: 32119546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking predictive methods for small-angle X-ray scattering from atomic coordinates of proteins using maximum likelihood consensus data.
    Trewhella J; Vachette P; Larsen AH
    IUCrJ; 2024 Sep; 11(Pt 5):762-779. PubMed ID: 38989800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate flexible fitting of high-resolution protein structures to small-angle x-ray scattering data using a coarse-grained model with implicit hydration shell.
    Zheng W; Tekpinar M
    Biophys J; 2011 Dec; 101(12):2981-91. PubMed ID: 22208197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application.
    Boldon L; Laliberte F; Liu L
    Nano Rev; 2015; 6():25661. PubMed ID: 25721341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Calculation of SAXS Profiles of Folded and Intrinsically Disordered Proteins from Computer Simulations.
    Henriques J; Arleth L; Lindorff-Larsen K; Skepö M
    J Mol Biol; 2018 Aug; 430(16):2521-2539. PubMed ID: 29548755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and ensemble refinement against SAXS data: Combining MD simulations with Bayesian inference or with the maximum entropy principle.
    Chatzimagas L; Hub JS
    Methods Enzymol; 2023; 678():23-54. PubMed ID: 36641209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale motions in the adenylate kinase solution ensemble: coarse-grained simulations and comparison with solution X-ray scattering.
    Daily MD; Makowski L; Phillips GN; Cui Q
    Chem Phys; 2012 Mar; 396():84-91. PubMed ID: 22711968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale molecular dynamics simulations of rotary motor proteins.
    Ekimoto T; Ikeguchi M
    Biophys Rev; 2018 Apr; 10(2):605-615. PubMed ID: 29204882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coarse-Grained Molecular Modeling of the Solution Structure Ensemble of Dengue Virus Nonstructural Protein 5 with Small-Angle X-ray Scattering Intensity.
    Zhu G; Saw WG; Nalaparaju A; Grüber G; Lu L
    J Phys Chem B; 2017 Mar; 121(10):2252-2264. PubMed ID: 28224788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of residue-level coarse-grained models in GENESIS for large-scale molecular dynamics simulations.
    Tan C; Jung J; Kobayashi C; Torre DU; Takada S; Sugita Y
    PLoS Comput Biol; 2022 Apr; 18(4):e1009578. PubMed ID: 35381009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ionic strength on SAXS data for proteins revealed by molecular dynamics simulations.
    Oroguchi T; Ikeguchi M
    J Chem Phys; 2011 Jan; 134(2):025102. PubMed ID: 21241150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the pH-dependent aggregation mechanisms of GCSF using low resolution protein characterization techniques and advanced molecular dynamics simulations.
    Ko SK; Berner C; Kulakova A; Schneider M; Antes I; Winter G; Harris P; Peters GHJ
    Comput Struct Biotechnol J; 2022; 20():1439-1455. PubMed ID: 35386098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate and Efficient SAXS/SANS Implementation Including Solvation Layer Effects Suitable for Molecular Simulations.
    Ballabio F; Paissoni C; Bollati M; de Rosa M; Capelli R; Camilloni C
    J Chem Theory Comput; 2023 Nov; 19(22):8401-8413. PubMed ID: 37923304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.