These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31984270)

  • 1. Stable, Dual Redox Unit Organic Electrodes.
    An SY; Schon TB; Seferos DS
    ACS Omega; 2020 Jan; 5(2):1134-1141. PubMed ID: 31984270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Arylene Diimide Frameworks for Highly Stable Lithium Ion Batteries.
    Schon TB; Tilley AJ; Kynaston EL; Seferos DS
    ACS Appl Mater Interfaces; 2017 May; 9(18):15631-15637. PubMed ID: 28430407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Dimensional Covalent Organic Framework as High-Performance Cathode Materials for Lithium-Ion Batteries.
    Jia C; Duan A; Liu C; Wang WZ; Gan SX; Qi QY; Li Y; Huang X; Zhao X
    Small; 2023 Jun; 19(24):e2300518. PubMed ID: 36918750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-Active Porous Organic Polymers as Novel Electrode Materials for Green Rechargeable Sodium-Ion Batteries.
    Weeraratne KS; Alzharani AA; El-Kaderi HM
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23520-23526. PubMed ID: 31180204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapping Halogen Anions in Cationic Viologen Porous Organic Polymers for Highly Cycling-Stable Cathode Materials.
    Wang Z; Qi Q; Jin W; Zhao X; Huang X; Li Y
    Small; 2023 Nov; 19(47):e2303430. PubMed ID: 37490528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perylene-Based All-Organic Redox Battery with Excellent Cycling Stability.
    Iordache A; Delhorbe V; Bardet M; Dubois L; Gutel T; Picard L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):22762-7. PubMed ID: 27517882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Triptycene-Based Layered/Flower-Like 2D Conductive Metal-Organic Framework with 3D Extension as an Electrode for Efficient Li Storage.
    Liu X; Yu M; Liu J; Wu S; Gong J
    Small; 2024 Feb; 20(8):e2306159. PubMed ID: 37840442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous, Hyper-cross-linked, Three-Dimensional Polymer as Stable, High Rate Capability Electrode for Lithium-Ion Battery.
    Mukherjee D; Gowda Y K G; Makri Nimbegondi Kotresh H; Sampath S
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19446-19454. PubMed ID: 28610426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benzoquinone- and Naphthoquinone-Bearing Polymers Synthesized by Ring-Opening Metathesis Polymerization as Cathode Materials for Lithium-Ion Batteries.
    Shi Y; Sun P; Yang J; Xu Y
    ChemSusChem; 2020 Jan; 13(2):334-340. PubMed ID: 31742909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclotetrabenzil Derivatives for Electrochemical Lithium-Ion Storage.
    Meng J; Robles A; Jalife S; Ren W; Zhang Y; Zhao L; Liang Y; Wu JI; Miljanić OŠ; Yao Y
    Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202300892. PubMed ID: 37067951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable Bifunctional Perylene Imide Radicals for High-Performance Organic-Lithium Redox-Flow Batteries.
    Li L; Gong HX; Chen DY; Lin MJ
    Chemistry; 2018 Sep; 24(50):13188-13196. PubMed ID: 29923233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous Metal-Organic Frameworks Containing Reversible Disulfide Linkages as Cathode Materials for Lithium-Ion Batteries.
    Shimizu T; Wang H; Matsumura D; Mitsuhara K; Ohta T; Yoshikawa H
    ChemSusChem; 2020 May; 13(9):2256-2263. PubMed ID: 31994841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries.
    Kumankuma-Sarpong J; Tang S; Guo W; Fu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetric All-Organic Battery Containing a Dual Redox-Active Polymer as Cathode and Anode Material.
    Casado N; Mantione D; Shanmukaraj D; Mecerreyes D
    ChemSusChem; 2020 May; 13(9):2464-2470. PubMed ID: 31643146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage.
    Wang G; Chandrasekhar N; Biswal BP; Becker D; Paasch S; Brunner E; Addicoat M; Yu M; Berger R; Feng X
    Adv Mater; 2019 Jul; 31(28):e1901478. PubMed ID: 31099072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Anti-Aromatic Covalent Organic Framework Cathode with Dual-Redox Centers for Rechargeable Aqueous Zinc Batteries.
    Lin Z; Lin L; Zhu J; Wu W; Yang X; Sun X
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38689-38695. PubMed ID: 35975747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-Processable Redox-Active Polymers of Intrinsic Microporosity for Electrochemical Energy Storage.
    Wang A; Tan R; Breakwell C; Wei X; Fan Z; Ye C; Malpass-Evans R; Liu T; Zwijnenburg MA; Jelfs KE; McKeown NB; Chen J; Song Q
    J Am Chem Soc; 2022 Sep; 144(37):17198-17208. PubMed ID: 36074146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable Hexaazatrinaphthalene-Based Planar Polymer Cathode Material for Organic Lithium-Ion Batteries.
    Sun Z; Yao H; Li J; Liu B; Lin Z; Shu M; Liu H; Zhu S; Guan S
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42603-42610. PubMed ID: 37639524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity.
    Yang X; Hu Y; Dunlap N; Wang X; Huang S; Su Z; Sharma S; Jin Y; Huang F; Wang X; Lee SH; Zhang W
    Angew Chem Int Ed Engl; 2020 Nov; 59(46):20385-20389. PubMed ID: 32722860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry.
    Lei Z; Yang Q; Xu Y; Guo S; Sun W; Liu H; Lv LP; Zhang Y; Wang Y
    Nat Commun; 2018 Feb; 9(1):576. PubMed ID: 29422540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.